Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Nature ; 613(7944): 534-542, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599984

RESUMO

To survive, animals must convert sensory information into appropriate behaviours1,2. Vision is a common sense for locating ethologically relevant stimuli and guiding motor responses3-5. How circuitry converts object location in retinal coordinates to movement direction in body coordinates remains largely unknown. Here we show through behaviour, physiology, anatomy and connectomics in Drosophila that visuomotor transformation occurs by conversion of topographic maps formed by the dendrites of feature-detecting visual projection neurons (VPNs)6,7 into synaptic weight gradients of VPN outputs onto central brain neurons. We demonstrate how this gradient motif transforms the anteroposterior location of a visual looming stimulus into the fly's directional escape. Specifically, we discover that two neurons postsynaptic to a looming-responsive VPN type promote opposite takeoff directions. Opposite synaptic weight gradients onto these neurons from looming VPNs in different visual field regions convert localized looming threats into correctly oriented escapes. For a second looming-responsive VPN type, we demonstrate graded responses along the dorsoventral axis. We show that this synaptic gradient motif generalizes across all 20 primary VPN cell types and most often arises without VPN axon topography. Synaptic gradients may thus be a general mechanism for conveying spatial features of sensory information into directed motor outputs.


Assuntos
Comportamento Animal , Drosophila , Neurônios , Desempenho Psicomotor , Sinapses , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Drosophila/anatomia & histologia , Drosophila/citologia , Drosophila/fisiologia , Neurônios/fisiologia , Campos Visuais/fisiologia , Sinapses/metabolismo , Axônios , Dendritos , Reação de Fuga
3.
Curr Biol ; 29(11): 1866-1876.e5, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31130457

RESUMO

Cooperative behavior emerges in biological systems through coordinated actions among individuals [1, 2]. Although widely observed across animal species, the cellular and molecular mechanisms underlying the establishment and maintenance of cooperative behaviors remain largely unknown [3]. To characterize the circuit mechanisms serving the needs of independent individuals and social groups, we investigated cooperative digging behavior in Drosophila larvae [4-6]. Although chemical and mechanical sensations are important for larval aggregation at specific sites [7-9], an individual larva's ability to participate in a cooperative burrowing cluster relies on direct visual input as well as visual and social experience during development. In addition, vision modulates cluster dynamics by promoting coordinated movements between pairs of larvae [5]. To determine the specific pathways within the larval visual circuit underlying cooperative social clustering, we examined larval photoreceptors (PRs) and the downstream local interneurons (lOLPs) using anatomical and functional studies [10, 11]. Our results indicate that rhodopsin-6-expressing-PRs (Rh6-PRs) and lOLPs are required for both cooperative clustering and movement detection. Remarkably, visual deprivation and social isolation strongly impact the structural and functional connectivity between Rh6-PRs and lOLPs, while at the same time having no effect on the adjacent rhodopsin-5-expressing PRs (Rh5-PRs). Together, our findings demonstrate that a specific larval visual pathway involved in social interactions undergoes experience-dependent modifications during development, suggesting that plasticity in sensory circuits could act as the cellular substrate for social learning, a possible mechanism allowing an animal to integrate into a malleable social environment and engage in complex social behaviors.


Assuntos
Drosophila/fisiologia , Interneurônios/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Animais , Comportamento Cooperativo , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Comportamento Alimentar/fisiologia , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia
4.
Nature ; 564(7734): E7, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30397347

RESUMO

Change history: In this Article, Extended Data Fig. 9 was appearing as Fig. 2 in the HTML, and in Fig. 2, the panel labels 'n' and 'o' overlapped the figure; these errors have been corrected online.

5.
APL Bioeng ; 2(3)2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30456343

RESUMO

Glioblastoma (GBM), a highly aggressive form of brain tumor, is a disease marked by extensive invasion into the surrounding brain. Interstitial fluid flow (IFF), or the movement of fluid within the spaces between cells, has been linked to increased invasion of GBM cells. Better characterization of IFF could elucidate underlying mechanisms driving this invasion in vivo. Here, we develop a technique to noninvasively measure interstitial flow velocities in the glioma microenvironment of mice using dynamic contrast-enhanced magnetic resonance imaging (MRI), a common clinical technique. Using our in vitro model as a phantom "tumor" system and in silico models of velocity vector fields, we show we can measure average velocities and accurately reconstruct velocity directions. With our combined MR and analysis method, we show that velocity magnitudes are similar across four human GBM cell line xenograft models and the direction of fluid flow is heterogeneous within and around the tumors, and not always in the outward direction. These values were not linked to the tumor size. Finally, we compare our flow velocity magnitudes and the direction of flow to a classical marker of vessel leakage and bulk fluid drainage, Evans blue. With these data, we validate its use as a marker of high and low IFF rates and IFF in the outward direction from the tumor border in implanted glioma models. These methods show, for the first time, the nature of interstitial fluid flow in models of glioma using a technique that is translatable to clinical and preclinical models currently using contrast-enhanced MRI.

6.
Nature ; 560(7717): 185-191, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30046111

RESUMO

Ageing is a major risk factor for many neurological pathologies, but its mechanisms remain unclear. Unlike other tissues, the parenchyma of the central nervous system (CNS) lacks lymphatic vasculature and waste products are removed partly through a paravascular route. (Re)discovery and characterization of meningeal lymphatic vessels has prompted an assessment of their role in waste clearance from the CNS. Here we show that meningeal lymphatic vessels drain macromolecules from the CNS (cerebrospinal and interstitial fluids) into the cervical lymph nodes in mice. Impairment of meningeal lymphatic function slows paravascular influx of macromolecules into the brain and efflux of macromolecules from the interstitial fluid, and induces cognitive impairment in mice. Treatment of aged mice with vascular endothelial growth factor C enhances meningeal lymphatic drainage of macromolecules from the cerebrospinal fluid, improving brain perfusion and learning and memory performance. Disruption of meningeal lymphatic vessels in transgenic mouse models of Alzheimer's disease promotes amyloid-ß deposition in the meninges, which resembles human meningeal pathology, and aggravates parenchymal amyloid-ß accumulation. Meningeal lymphatic dysfunction may be an aggravating factor in Alzheimer's disease pathology and in age-associated cognitive decline. Thus, augmentation of meningeal lymphatic function might be a promising therapeutic target for preventing or delaying age-associated neurological diseases.


Assuntos
Envelhecimento/líquido cefalorraquidiano , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/fisiopatologia , Vasos Linfáticos/fisiopatologia , Meninges/fisiopatologia , Envelhecimento/patologia , Doença de Alzheimer/patologia , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Cognição , Transtornos Cognitivos/fisiopatologia , Transtornos Cognitivos/terapia , Modelos Animais de Doenças , Líquido Extracelular/metabolismo , Feminino , Homeostase , Humanos , Linfonodos/metabolismo , Vasos Linfáticos/patologia , Masculino , Meninges/patologia , Camundongos , Camundongos Transgênicos , Perfusão
7.
Curr Biol ; 27(18): 2821-2826.e2, 2017 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-28918946

RESUMO

Spectacular examples of cooperative behavior emerge among a variety of animals and may serve critical roles in fitness [1, 2]. However, the rules governing such behavior have been difficult to elucidate [2]. Drosophila larvae are known to socially aggregate [3, 4] and use vision, mechanosensation, and gustation to recognize each other [5-8]. We describe here a model experimental system of cooperative behavior involving Drosophila larvae. While foraging in liquid food, larvae are observed to align themselves and coordinate their movements in order to drag a common air cavity and dig deeper. Large-scale cooperation is required to maintain contiguous air contact across the posterior breathing spiracles. On the basis of a directed genetic screen we find that vision plays a key role in cluster dynamics. Our experiments show that blind larvae form fewer clusters and dig less efficiently than wild-type and that socially isolated larvae behave as if they were blind. Furthermore, we observed that blind and socially isolated larvae do not integrate effectively into wild-type clusters. Behavioral data indicate that vision and social experience are required to coordinate precise movements between pairs of larvae, therefore increasing the degree of cooperativity within a cluster. Hence, we hypothesize that vision and social experience allow Drosophila larvae to assemble cooperative digging groups leading to more effective feeding and potential evasion of predators. Most importantly, these results indicate that control over membership of such a cooperative group can be regulated.


Assuntos
Drosophila/fisiologia , Animais , Comportamento Cooperativo , Drosophila/crescimento & desenvolvimento , Comportamento Alimentar , Larva/crescimento & desenvolvimento , Larva/fisiologia , Movimento
8.
Br J Pharmacol ; 138(1): 188-92, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12522089

RESUMO

1 The neuroleptic [(3)H]-haloperidol (HP) was taken up in synaptosomes prepared from rat brain, in a temperature-, sodium ion-, and energy-dependent process. 2 The highest concentration of uptake sites (V(max)=2.37 pmol mg(-1) protein min(-1)) was in the striatum with the other brain areas displaying lower (by 50-70%) values. 3 The affinity values (K(m) approximately equal to 40 nM) were similar in all brain areas considered. 4 The pharmacological characterization did not indicate a well-defined group of inhibitors, which suggested that HP might not use a transporter for recognized neurotransmitters. 5 The HP metabolites tested, including HPTP, were competitive inhibitors of [(3)H]-HP uptake, an indirect indication that they may actively enter the striatal nerve endings through the same carrier. 6 Since the uptake process was partially affected by the incubation of [(3)H]-HP in the presence of several antagonists of HP-transforming cytochrome P450 isoforms, the binding of HP at some enzyme sites inside the synaptosome cannot be excluded. 7 In conclusion, the present results suggest that HP may be actively transported in the rat brain.


Assuntos
Encéfalo/metabolismo , Haloperidol/metabolismo , Trítio/metabolismo , Animais , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Sprague-Dawley , Sinaptossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA