Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Plant ; 14(5): 829-837, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33684542

RESUMO

Pioneer transcription factors (TFs) are a special category of TFs with the capacity to bind to closed chromatin regions in which DNA is wrapped around histones and may be highly methylated. Subsequently, pioneer TFs are able to modify the chromatin state to initiate gene expression. In plants, LEAFY (LFY) is a master floral regulator and has been suggested to act as a pioneer TF in Arabidopsis. Here, we demonstrate that LFY is able to bind both methylated and non-methylated DNA using a combination of in vitro genome-wide binding experiments and structural modeling. Comparisons between regions bound by LFY in vivo and chromatin accessibility data suggest that a subset of LFY bound regions is occupied by nucleosomes. We confirm that LFY is able to bind nucleosomal DNA in vitro using reconstituted nucleosomes. Finally, we show that constitutive LFY expression in seedling tissues is sufficient to induce chromatin accessibility in the LFY direct target genes APETALA1 and AGAMOUS. Taken together, our study suggests that LFY possesses key pioneer TF features that contribute to launching the floral gene expression program.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Flores/citologia , Plântula/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Nucleossomos/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética
2.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419220

RESUMO

An ongoing challenge in functional epigenomics is to develop tools for precise manipulation of epigenetic marks. These tools would allow moving from correlation-based to causal-based findings, a necessary step to reach conclusions on mechanistic principles. In this review, we describe and discuss the advantages and limits of tools and technologies developed to impact epigenetic marks, and which could be employed to study their direct effect on nuclear and chromatin structure, on transcription, and their further genuine role in plant cell fate and development. On one hand, epigenome-wide approaches include drug inhibitors for chromatin modifiers or readers, nanobodies against histone marks or lines expressing modified histones or mutant chromatin effectors. On the other hand, locus-specific approaches consist in targeting precise regions on the chromatin, with engineered proteins able to modify epigenetic marks. Early systems use effectors in fusion with protein domains that recognize a specific DNA sequence (Zinc Finger or TALEs), while the more recent dCas9 approach operates through RNA-DNA interaction, thereby providing more flexibility and modularity for tool designs. Current developments of "second generation", chimeric dCas9 systems, aiming at better targeting efficiency and modifier capacity have recently been tested in plants and provided promising results. Finally, recent proof-of-concept studies forecast even finer tools, such as inducible/switchable systems, that will allow temporal analyses of the molecular events that follow a change in a specific chromatin mark.


Assuntos
Biotecnologia/métodos , Cromatina/genética , Epigênese Genética , Epigenômica/métodos , Edição de Genes/métodos , Plantas/genética , Animais , Cromatina/metabolismo , Metilação de DNA , Regulação da Expressão Gênica , Humanos
3.
Genes (Basel) ; 11(1)2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941094

RESUMO

The ATP-dependent Switch/Sucrose non-fermenting (SWI/SNF) chromatin remodeling complex (CRC) regulates the transcription of many genes by destabilizing interactions between DNA and histones. In plants, BRAHMA (BRM), one of the two catalytic ATPase subunits of the complex, is the closest homolog of the yeast and animal SWI2/SNF2 ATPases. We summarize here the advances describing the roles of BRM in plant development as well as its recently reported chromatin-independent role in pri-miRNA processing in vitro and in vivo. We also enlighten the roles of plant-specific partners that physically interact with BRM. Three main types of partners can be distinguished: (i) DNA-binding proteins such as transcription factors which mostly cooperate with BRM in developmental processes, (ii) enzymes such as kinases or proteasome-related proteins that use BRM as substrate and are often involved in response to abiotic stress, and (iii) an RNA-binding protein which is involved with BRM in chromatin-independent pri-miRNA processing. This overview contributes to the understanding of the central position occupied by BRM within regulatory networks controlling fundamental biological processes in plants.


Assuntos
Adenosina Trifosfatases , Proteínas de Plantas , Plantas , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , MicroRNAs/biossíntese , MicroRNAs/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Plantas/genética , Proteólise , Precursores de RNA/biossíntese , Precursores de RNA/genética , RNA de Plantas/biossíntese , RNA de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Mol Plant ; 12(6): 743-763, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30447332

RESUMO

Transcription factors (TFs) are key cellular components that control gene expression. They recognize specific DNA sequences, the TF binding sites (TFBSs), and thus are targeted to specific regions of the genome where they can recruit transcriptional co-factors and/or chromatin regulators to fine-tune spatiotemporal gene regulation. Therefore, the identification of TFBSs in genomic sequences and their subsequent quantitative modeling is of crucial importance for understanding and predicting gene expression. Here, we review how TFBSs can be determined experimentally, how the TFBS models can be constructed in silico, and how they can be optimized by taking into account features such as position interdependence within TFBSs, DNA shape, and/or by introducing state-of-the-art computational algorithms such as deep learning methods. In addition, we discuss the integration of context variables into the TFBS modeling, including nucleosome positioning, chromatin states, methylation patterns, 3D genome architectures, and TF cooperative binding, in order to better predict TF binding under cellular contexts. Finally, we explore the possibilities of combining the optimized TFBS model with technological advances, such as targeted TFBS perturbation by CRISPR, to better understand gene regulation, evolution, and plant diversity.


Assuntos
Fatores de Transcrição/metabolismo , Algoritmos , Sítios de Ligação , Biologia Computacional/métodos , Flores/metabolismo , Regulação da Expressão Gênica/fisiologia , Ligação Proteica
5.
New Phytol ; 220(2): 579-592, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29995985

RESUMO

The Arabidopsis LEAFY (LFY) transcription factor is a key regulator of floral meristem emergence and identity. LFY interacts genetically and physically with UNUSUAL FLORAL ORGANS, a substrate adaptor of CULLIN1-RING ubiquitin ligase complexes (CRL1). The functionally redundant genes BLADE ON PETIOLE1 (BOP1) and -2 (BOP2) are potential candidates to regulate LFY activity and have recently been shown to be substrate adaptors of CULLIN3 (CUL3)-RING ubiquitin ligases (CRL3). We tested the hypothesis that LFY activity is controlled by BOPs and CUL3s in plants and that LFY is a substrate for ubiquitination by BOP-containing CRL3 complexes. When constitutively expressed, LFY activity is fully dependent on BOP2 as well as on CUL3A and B to regulate target genes such as APETALA1 and to induce ectopic flower formation. We also show that LFY and BOP2 proteins interact physically and that LFY-dependent ubiquitinated species are produced in vitro in a reconstituted cell-free CRL3 system in the presence of LFY, BOP2 and CUL3. This new post-translational regulation of LFY activity by CRL3 complexes makes it a unique transcription factor subjected to a positive dual regulation by both CRL1 and CRL3 complexes and suggests a novel mechanism for promoting flower development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Culina/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Transcrição Gênica , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas Culina/genética , Genes de Plantas , Humanos , Mutação/genética , Fenótipo , Células Vegetais/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Ligação Proteica , Ubiquitinação
6.
J Exp Bot ; 69(10): 2461-2471, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29506187

RESUMO

Chromatin modifiers and remodelers are involved in generating dynamic changes at the chromatin, which allow differential and specific readouts of the genome. While genetic evidence indicates that several chromatin factors play a key role in controlling basic developmental programs for inflorescence and flower morphogenesis, it remained unknown until recently how they exert their specificity toward gene expression, both temporally and spatially. An emerging topic is the recruitment or eviction of chromatin factors through the activity of sequence-specific DNA-binding domains, present in the chromatin factors themselves or in partnering transcription factors. Here we summarize recent progress that has been made in this regard in the model plant Arabidopsis thaliana. We further outline the different possible modes through which chromatin complexes specifically target genes involved in flower development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cromatina/metabolismo , Flores/crescimento & desenvolvimento , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/genética , Fatores de Transcrição/metabolismo
7.
Trends Plant Sci ; 22(8): 718-725, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28668510

RESUMO

Proteins often act in complexes assembled via protein-protein interaction domains. The sterile alpha motif (SAM) domain is one of the most prominent interaction domains in animals and is present in proteins of diverse functions. This domain allows head-to-tail closed oligomerisation or polymer formation resulting in homo- and/or heterocomplexes that have been shown to be important for proper protein localisation and function. In plants this domain is also present but has been poorly studied except for recent studies on the LEAFY floral regulator and the tRNA import component (TRIC)1/2 proteins. Here we catalogue SAM domain-containing proteins from arabidopsis (Arabidopsis thaliana), compare plant and other eukaryotic SAM domains, and perform homology modelling to probe plant SAM domain interaction capabilities.


Assuntos
Arabidopsis/genética , Modelos Moleculares , Motivo Estéril alfa , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Modelos Estruturais , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência
8.
Plant J ; 74(4): 678-89, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23445516

RESUMO

In indeterminate inflorescences, floral meristems develop on the flanks of the shoot apical meristem, at positions determined by auxin maxima. The floral identity of these meristems is conferred by a handful of genes called floral meristem identity genes, among which the LEAFY (LFY) transcription factor plays a prominent role. However, the molecular mechanism controlling the early emergence of floral meristems remains unknown. A body of evidence indicates that LFY may contribute to this developmental shift, but a direct effect of LFY on meristem emergence has not been demonstrated. We have generated a LFY allele with reduced floral function and revealed its ability to stimulate axillary meristem growth. This role is barely detectable in the lfy single mutant but becomes obvious in several double mutant backgrounds and plants ectopically expressing LFY. We show that this role requires the ability of LFY to bind DNA, and is mediated by direct induction of REGULATOR OF AXILLARY MERISTEMS1 (RAX1) by LFY. We propose that this function unifies the diverse roles described for LFY in multiple angiosperm species, ranging from monocot inflorescence identity to legume leaf development, and that it probably pre-dates the origin of angiosperms.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Meristema/genética , Fatores de Transcrição/genética , Alelos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cristalografia , Proteínas de Ligação a DNA , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Modelos Biológicos , Mutação , Motivos de Nucleotídeos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Multimerização Proteica , Estrutura Terciária de Proteína , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
9.
Biol Aujourdhui ; 206(1): 63-7, 2012.
Artigo em Francês | MEDLINE | ID: mdl-22463997

RESUMO

Flowering plants or angiosperms constitute the vast majority of plant species. Their evolutionary success is largely due to the efficiency of the flower as reproductive structure. Work performed on model plant species in the last 20 years has identified the LEAFY gene as a key regulator of flower development. LEAFY is a unique plant transcription factor responsible for the formation of the earliest floral stage as well as for the induction of homeotic genes triggering floral organ determination. But LEAFY is also present in non-flowering plants such as mosses, ferns and gymnosperms. Recent studies suggest that LEAFY might play a role in cell division and meristem development in basal plants, a function that is probably more ancestral than the later acquired floral function. Analyzing the evolution of the role and the biochemical properties of this peculiar regulator starts to shade light on the mysterious origin of flowering plants.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/fisiologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Briófitas/genética , Cycadopsida/genética , Evolução Molecular , Gleiquênias/genética , Magnoliopsida/genética , Magnoliopsida/crescimento & desenvolvimento , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Especificidade da Espécie , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica
10.
Plant Physiol ; 157(3): 1232-42, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21875893

RESUMO

The CONSTITUTIVE EXPRESSOR OF PATHOGENESIS-RELATED GENES5 (CPR5) gene of Arabidopsis (Arabidopsis thaliana) encodes a putative membrane protein of unknown biochemical function and displays highly pleiotropic functions, particularly in pathogen responses, cell proliferation, cell expansion, and cell death. Here, we demonstrate a link between CPR5 and the GLABRA1 ENHANCER BINDING PROTEIN (GeBP) family of transcription factors. We investigated the primary role of the GeBP/GeBP-like (GPL) genes using transcriptomic analysis of the quadruple gebp gpl1,2,3 mutant and one overexpressing line that displays several cpr5-like phenotypes including dwarfism, spontaneous necrotic lesions, and increased pathogen resistance. We found that GeBP/GPLs regulate a set of genes that represents a subset of the CPR5 pathway. This subset includes genes involved in response to stress as well as cell wall metabolism. Analysis of the quintuple gebp gpl1,2,3 cpr5 mutant indicates that GeBP/GPLs are involved in the control of cell expansion in a CPR5-dependent manner but not in the control of cell proliferation. In addition, to our knowledge, we provide the first evidence that the CPR5 protein is localized in the nucleus of plant cells and that a truncated version of the protein with no transmembrane domain can trigger cpr5-like processes when fused to the VP16 constitutive transcriptional activation domain. Our results provide clues on how CPR5 and GeBP/GPLs play opposite roles in the control of cell expansion and suggest that the CPR5 protein is involved in transcription.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Afidicolina/farmacologia , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Tamanho Celular/efeitos dos fármacos , Epistasia Genética/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Mutação/genética , Proteínas Nucleares/metabolismo , Fenótipo , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/genética , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos
11.
Plant Mol Biol ; 73(6): 673-85, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20495852

RESUMO

Tobacco (Nicotiana sylvestris) glandular trichomes make an attractive target for isoprenoid metabolic engineering because they produce large amounts of one type of diterpenoids, alpha- and beta-cembratrien-diols. This article describes the establishment of tools for metabolic engineering of tobacco trichomes, namely a transgenic line with strongly reduced levels of diterpenoids in the exudate and the characterization of a trichome specific promoter. The diterpene-free tobacco line was generated by silencing the major tobacco diterpene synthases, which were found to be encoded by a family of four highly similar genes (NsCBTS-2a, NsCBTS-2b, NsCBTS-3 and NsCBTS-4), one of which is a pseudogene. The promoter regions of all four CBTS genes were sequenced and found to share over 95% identity between them. Transgenic plants expressing uidA under the control of the NsCBTS-2a promoter displayed a specific pattern of GUS expression restricted exclusively to the glandular cells of the tall secretory trichomes. A series of sequential and internal deletions of the NsCBTS-2a promoter led to the identification of two cis-acting regions. The first, located between positions -589 to -479 from the transcription initiation site, conferred a broad transcriptional activation, not only in the glandular cells, but also in cells of the trichome stalk, as well as in the leaf epidermis and the root. The second region, located between positions -279 to -119, had broad repressor activity except in trichome glandular cells and is mainly responsible for the specific expression pattern of the NsCBTS-2a gene. These results establish the basis for the identification of trans-regulators required for the expression of the CBTS genes restricted to the secretory cells of the glandular trichomes.


Assuntos
Alquil e Aril Transferases/genética , Nicotiana/genética , Proteínas de Plantas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Alquil e Aril Transferases/classificação , Alquil e Aril Transferases/metabolismo , Sequência de Bases , Diterpenos/análise , Diterpenos/química , Diterpenos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas , Glucuronidase/genética , Glucuronidase/metabolismo , Dados de Sequência Molecular , Estrutura Molecular , Família Multigênica , Filogenia , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Nicotiana/metabolismo
12.
Plant Physiol ; 146(3): 1142-54, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18162594

RESUMO

Understanding the role of transcription factors (TFs) is essential in reconstructing developmental regulatory networks. The plant-specific GeBP TF family of Arabidopsis thaliana (Arabidopsis) comprises 21 members, all of unknown function. A subset of four members, the founding member GeBP and GeBP-like proteins (GPL) 1, 2, and 3, shares a conserved C-terminal domain. Here we report that GeBP/GPL genes represent a newly defined class of leucine-zipper (Leu-zipper) TFs and that they play a redundant role in cytokinin hormone pathway regulation. Specifically, we demonstrate using yeast, in vitro, and split-yellow fluorescent protein in planta assays that GeBP/GPL proteins form homo- and heterodimers through a noncanonical Leu-zipper motif located in the C-terminal domain. A triple loss-of-function mutant of the three most closely related genes gebp gpl1 gpl2 shows a reduced sensitivity to exogenous cytokinins in a subset of cytokinin responses such as senescence and growth, whereas root inhibition is not affected. We find that transcript levels of type-A cytokinin response genes, which are involved in the negative feedback regulation of cytokinin signaling, are higher in the triple mutant. Using a GPL version that acts as a constitutive transcriptional activator, we show that the regulation of Arabidopsis response regulators (ARRs) is mediated by at least one additional, as yet unknown, repressor acting genetically downstream in the GeBP/GPL pathway. Our results indicate that GeBP/GPL genes encode a new class of unconventional Leu-zipper TF proteins and suggest that their role in the cytokinin pathway is to antagonize the negative feedback regulation on ARR genes to trigger the cytokinin response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Dimerização , Retroalimentação Fisiológica/fisiologia , Regulação da Expressão Gênica de Plantas , Zíper de Leucina , Família Multigênica , Mutação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
13.
Plant Physiol ; 136(3): 3660-9, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15516508

RESUMO

Embryonic regulators LEC2 (LEAFY COTYLEDON2) and FUS3 (FUSCA3) are involved in multiple aspects of Arabidopsis (Arabidopsis thaliana) seed development, including repression of leaf traits and premature germination and activation of seed storage protein genes. In this study, we show that gibberellin (GA) hormone biosynthesis is regulated by LEC2 and FUS3 pathways. The level of bioactive GAs is increased in immature seeds of lec2 and fus3 mutants relative to wild-type level. In addition, we show that the formation of ectopic trichome cells on lec2 and fus3 embryos is a GA-dependent process as in true leaves, suggesting that the GA pathway is misactivated in embryonic mutants. We next demonstrate that the GA-biosynthesis gene AtGA3ox2, which encodes the key enzyme AtGA3ox2 that catalyzes the conversion of inactive to bioactive GAs, is ectopically activated in embryos of the two mutants. Interestingly, both beta-glucuronidase reporter gene expression and in situ hybridization indicate that FUS3 represses AtGA3ox2 expression mainly in epidermal cells of embryo axis, which is distinct from AtGA3ox2 pattern at germination. Finally, we show that the FUS3 protein physically interacts with two RY elements (CATGCATG) present in the AtGA3ox2 promoter. This work suggests that GA biosynthesis is directly controlled by embryonic regulators during Arabidopsis embryonic development.


Assuntos
Arabidopsis/embriologia , Arabidopsis/genética , Genes de Plantas , Giberelinas/biossíntese , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Germinação , Mutação , Regiões Promotoras Genéticas , Plântula/embriologia , Plântula/genética , Plântula/metabolismo
14.
Plant Physiol ; 134(4): 1283-92, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15047892

RESUMO

The FKBP12 (FK506-binding protein 12 kD) immunophilin interacts with several protein partners in mammals and is a physiological regulator of the cell cycle. In Arabidopsis, only one specific partner of AtFKBP12, namely AtFIP37 (FKBP12 interacting protein 37 kD), has been identified but its function in plant development is not known. We present here the functional analysis of AtFIP37 in Arabidopsis. Knockout mutants of AtFIP37 show an embryo-lethal phenotype that is caused by a strong delay in endosperm development and embryo arrest. AtFIP37 promoter::beta-glucuronidase reporter gene constructs show that the gene is expressed during embryogenesis and throughout plant development, in undifferentiating cells such as meristem or embryonic cells as well as highly differentiating cells such as trichomes. A translational fusion with the enhanced yellow fluorescent protein indicates that AtFIP37 is a nuclear protein localized in multiple subnuclear foci that show a speckled distribution pattern. Overexpression of AtFIP37 in transgenic lines induces the formation of large trichome cells with up to six branches. These large trichomes have a DNA content up to 256C, implying that these cells have undergone extra rounds of endoreduplication. Altogether, these data show that AtFIP37 is critical for life in Arabidopsis and implies a role for AtFIP37 in the regulation of the cell cycle as shown for FKBP12 and TOR (target of rapamycin) in mammals.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Transporte/genética , Extensões da Superfície Celular/genética , Imunofilinas/genética , Epiderme Vegetal/genética , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Extensões da Superfície Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Imunofilinas/metabolismo , Dados de Sequência Molecular , Mutação , Epiderme Vegetal/fisiologia , Mapeamento de Interação de Proteínas , Proteínas de Ligação a RNA , Homologia de Sequência de Aminoácidos
15.
Plant J ; 33(2): 305-17, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12535344

RESUMO

Trichomes of Arabidopsis are single-celled epidermal hair that are a useful model for studying plant cell fate determination. Trichome initiation requires the activity of the GLABROUS1 (GL1) gene whose expression in epidermal and trichome cells is dependent on the presence of a 3'-cis-regulatory element. Using a one-hybrid screen, we have isolated a cDNA, which encodes for a protein, GL1 enhancer binding protein (GeBP), that binds this regulatory element in yeast and in vitro. GeBP and its three homologues in Arabidopsis share two regions: a central region with no known motifs and a C-terminal region with a putative leucine-zipper motif. We show that both regions are necessary for trans-activation in yeast. A translational fusion with the Yellow Fluorescent Protein (YFP) indicates that GeBP is a nuclear protein whose localization is restricted to, on average, 3-5 subnuclear foci that might correspond to nucleoli. Transcriptional fusion with the GUS reporter indicates that GeBP is mainly expressed in vegetative meristematic tissues and in very young leaf primordia. We looked at GeBP expression in plants mutated in or misexpressing KNAT1, a KNOX gene, expressed in the shoot apical meristem and downregulated in leaf founder cells, and found that GeBP transcript level is regulated by KNAT1 suggesting that KNAT1 is a transcriptional activator of GeBP. This regulation suggests that GeBP is acting as a repressor of leaf cell fate.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Proteínas de Homeodomínio/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/química , Elementos Facilitadores Genéticos/genética , Proteínas de Homeodomínio/genética , Zíper de Leucina , Meristema/metabolismo , Dados de Sequência Molecular , Mutação/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Folhas de Planta/metabolismo , Ligação Proteica , Transporte Proteico , Fatores de Transcrição , Ativação Transcricional , Regulação para Cima , Leveduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA