RESUMO
Background and Aims: Decoding pancreatic ductal adenocarcinoma heterogeneity and the consequent therapeutic selection remains a challenge. We aimed to characterize epigenetically regulated pathways involved in pancreatic ductal adenocarcinoma progression. Methods: Global DNA methylation analysis in pancreatic cancer patient tissues and cell lines was performed to identify differentially methylated genes. Targeted bisulfite sequencing and in vitro methylation reporter assays were employed to investigate the direct link between site-specific methylation and transcriptional regulation. A series of in vitro loss-of-function and gain-of function studies and in vivo xenograft and the KPC (LSL-Kras G12D/+ ; LSL-Trp53 R172H/+ ; Pdx1-Cre) mouse models were used to assess pancreatic cancer cell properties. Gene and protein expression analyses were performed in 3 different cohorts of pancreatic cancer patients and correlated to clinicopathological parameters. Results: We identify Hepatocyte Nuclear Factor 4A (HNF4A) as a novel target of hypermethylation in pancreatic cancer and demonstrate that site-specific proximal promoter methylation drives HNF4A transcriptional repression. Expression analyses in patients indicate the methylation-associated suppression of HNF4A expression in pancreatic cancer tissues. In vitro and in vivo studies reveal that HNF4A is a novel tumor suppressor in pancreatic cancer, regulating cancer growth and aggressiveness. As evidenced in both the KPC mouse model and human pancreatic cancer tissues, HNF4A expression declines significantly in the early stages of the disease. Most importantly, HNF4 loss correlates with poor overall patient survival. Conclusion: HNF4A silencing, mediated by promoter DNA methylation, drives pancreatic cancer development and aggressiveness leading to poor patient survival.
RESUMO
Blinatumomab is the first bi-specific T-cell engager approved for relapsed or refractory B-cell precursor acute lymphoblastic leukaemia (B-ALL). Despite remarkable clinical results, the effects of blinatumomab on the host immune cell repertoire are not fully elucidated. In the present study, we characterized the peripheral blood (PB) and, for the first time, the bone marrow (BM) immune cell repertoire upon blinatumomab treatment. Twenty-nine patients with B-ALL received blinatumomab according to clinical practice. Deep multiparametric flow cytometry was used to characterize lymphoid subsets during the first treatment cycle. Blinatumomab induced a transient redistribution of PB effector T-cell subsets and Treg cells with a persistent increase in cytotoxic NK cells, which was associated with a transient upregulation of immune checkpoint receptors on PB CD4 and CD8 T-cell subpopulations and of CD39 expression on suppressive Treg cells. Of note, BM immune T-cell subsets showed a broader post-treatment subversion, including the modulation of markers associated with a T-cell-exhausted phenotype. In conclusion, our study indicates that blinatumomab differentially modulates the PB and BM immune cell repertoire, which may have relevant clinical implications in the therapeutic setting.
Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Medula Óssea/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Indução de Remissão , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismoRESUMO
Single-cell and spatial multimodal technologies have propelled discoveries of the solid tumor microenvironment (TME) molecular features and their correlation with clinical response and resistance to immunotherapy. Computational tools are incessantly being developed to characterize tumor-infiltrating immune cells and to model tumor immune escape. These advances have led to substantial research into T-cell hypofunctional states in the TME and their reinvigoration with T cell-targeting approaches, including checkpoint inhibitors (CPI). Until recently, we lacked a high-dimensional picture of the acute myeloid leukemia (AML) TME, including compositional and functional differences in immune cells between disease onset and post-chemotherapy or post-transplantation relapse, and the dynamic interplay between immune cells and AML blasts at various maturation stages. AML subgroups with heightened interferon (IFN)-g signaling were shown to derive clinical benefit from CD123 x CD3 bispecific DART molecules and CPI, whilst being less likely to respond to standard-of-care cytotoxic chemotherapy. In this Review, we first highlight recent progress into deciphering immune effector states in AML (including T-cell exhaustion and senescence), oncogenic signaling mechanisms that could reduce the susceptibility of AML cells to T cell-mediated killing and the dichotomous roles of type I and II IFN in anti-tumor immunity. In the second part, we discuss how this knowledge could be translated into opportunities to manipulate the AML TME with the aim to overcome resistance to CPI and other T-cell immunotherapies, building on recent success stories in the solid tumor field, and we provide an outlook for the future.
RESUMO
AIMS: Morphological studies of pancreas samples obtained from young people with recent-onset type 1 diabetes have revealed distinct patterns of immune cell infiltration of the pancreatic islets suggestive of two age-associated type 1 diabetes endotypes that differ by inflammatory responses and rates of disease progression. The objective of this study was to investigate whether these proposed disease endotypes are associated with pathological differences in immune cell activation and cytokine secretion by applying multiplexed gene expression analysis to pancreatic tissue from recent-onset type 1 diabetes cases. METHODS: RNA was extracted from samples of fixed, paraffin-embedded pancreas tissue from type 1 diabetes cases characterised by endotype and from controls without diabetes. Expression levels of 750 genes associated with autoimmune inflammation were determined by hybridisation to a panel of capture and reporter probes and these were counted as a measure of gene expression. Normalised counts were analysed for differences in expression between 29 type 1 diabetes cases and 7 controls without diabetes, and between the two type 1 diabetes endotypes. RESULTS: Ten inflammation-associated genes, including INS, were significantly under-expressed in both endotypes and 48 genes were more highly expressed. A different set of 13 genes associated with the development, activation and migration of lymphocytes was uniquely overexpressed in the pancreas of people developing diabetes at younger age. CONCLUSIONS: The results provide evidence that histologically defined type 1 diabetes endotypes differ in their immunopathology and identify inflammatory pathways specifically involved in disease developing at a young age, essential for a better understanding of disease heterogeneity.
Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Humanos , Adolescente , Diabetes Mellitus Tipo 1/metabolismo , Pâncreas/patologia , Ilhotas Pancreáticas/metabolismo , Inflamação/metabolismo , Diferenciação CelularRESUMO
Androgen independency is associated with poor prostate cancer (PCa) survival. Here we report that silencing of transglutaminase-2 (TG2) expression by CRISPR-Cas9 is associated with upregulation of androgen receptor (AR) transcription in PCa cell lines. Knockout of TG2 reversed the migratory potential and anchorage independency of PC3 and DU145 cells and revealed a reduced level of mucin-1 (MUC1) RNA transcript through unbiased multi-omics profiling, which was restored by selective add-back of the truncated TG2 isoform (TGM2_v2). Silencing of AR resulted into increased MUC1 in TG2KO PC3 cells showing that TG2 affects transcriptional regulation of MUC1 via repressing AR expression. Treatment of PC3 WT cell line with TG2 inhibitor ZDON led to a significant increase in AR expression and decrease in MUC1. ZDON also blocked the formation of MUC1-multimers labelled with TG amine-donor substrates in reducing conditions, revealing for the first time a role for TG2, which we show to be externalised via extracellular vesicles, in MUC1 stabilisation via calcium-dependent transamidation. A specific antibody towards TGM2_v2 revealed its restricted nuclear location compared to the canonical long form of TG2 (TGM2_v1), which is predominantly cytosolic, suggesting that this form contributes to the previously suggested TG2-mediated NF-κB activation and AR transcriptional repression. As TGM2_v2 transcription was increased in biopsies of early-stage prostate adenocarcinoma (PRAD) patients compared to subjects presenting inflammatory prostatitis, and total TG2 protein expression significantly increased in PRAD versus normal tissue, the role of TG2 and its truncated form as a prostate malignancy marker is suggested. In conclusion, this investigation has provided the first unbiased discovery of a novel pathway mediated by TG2 via MUC1, which is shown to contribute to androgen insensitivity and malignancy of PCa cells and be upregulated in PCa biopsies, with potential relevance to cancer immune evasion.
Assuntos
Androgênios , Neoplasias da Próstata , Masculino , Humanos , Androgênios/farmacologia , Mucina-1/genética , Neoplasias da Próstata/genética , Linhagem Celular , Transglutaminases/genéticaRESUMO
The gene expression analysis of formalin-fixed paraffin-embedded (FFPE) tissues is often hampered by poor RNA quality, which results from the oxidation, cross-linking and other chemical modifications induced by the inclusion in paraffin. Yet, FFPE samples are a valuable source for molecular studies and can provide great insights into disease progression and prognosis. With the advancement of genomic technologies, new methods have been established that offer reliable and accurate gene expression workflows on samples of poor quality. NanoString is a probe-based technology that allows the direct counting of the mRNA transcripts and can be applied to degraded samples. Here, we have tested 2 RNA extraction methods for FFPE samples, and we have performed a titration experiment to evaluate the impact of RNA degradation and RNA input on the gene expression profiles assessed using the NanoString IO360 panel. We have selected FFPE samples of different DV200 values and assessed them on the nCounter platform with 2 different amounts of input RNA. This study concludes that the nCounter is a robust and reliable platform to assess the gene expression of RNA samples with DV200 > 30%; its robustness and ease of use could be of particular benefit to clinical settings.
Assuntos
Perfilação da Expressão Gênica , RNA , Humanos , Inclusão em Parafina/métodos , Fixação de Tecidos/métodos , Perfilação da Expressão Gênica/métodos , Análise em Microsséries , RNA/análiseRESUMO
BackgroundImmune exhaustion and senescence are dominant dysfunctional states of effector T cells and major hurdles for the success of cancer immunotherapy. In the current study, we characterized how acute myeloid leukemia (AML) promotes the generation of senescent-like CD8+ T cells and whether they have prognostic relevance.METHODSWe analyzed NanoString, bulk RNA-Seq and single-cell RNA-Seq data from independent clinical cohorts comprising 1,896 patients treated with chemotherapy and/or immune checkpoint blockade (ICB).ResultsWe show that senescent-like bone marrow CD8+ T cells were impaired in killing autologous AML blasts and that their proportion negatively correlated with overall survival (OS). We defined what we believe to be new immune effector dysfunction (IED) signatures using 2 gene expression profiling platforms and reported that IED scores correlated with adverse-risk molecular lesions, stemness, and poor outcomes; these scores were a more powerful predictor of OS than 2017-ELN risk or leukemia stem cell (LSC17) scores. IED expression signatures also identified an ICB-unresponsive tumor microenvironment and predicted significantly shorter OS.ConclusionThe IED scores provided improved AML-risk stratification and could facilitate the delivery of personalized immunotherapies to patients who are most likely to benefit.TRIAL REGISTRATIONClinicalTrials.gov; NCT02845297.FUNDINGJohn and Lucille van Geest Foundation, Nottingham Trent University's Health & Wellbeing Strategic Research Theme, NIH/NCI P01CA225618, Genentech-imCORE ML40354, Qatar National Research Fund (NPRP8-2297-3-494).
Assuntos
Doenças do Sistema Imunitário , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamento farmacológico , Prognóstico , Imunoterapia , Microambiente Tumoral , Linfócitos T CD8-PositivosRESUMO
The p53 protein is mutated in more than 50% of human cancers. Mutated p53 proteins not only lose their normal function but often acquire novel oncogenic functions, a phenomenon termed mutant p53 gain-of-function. Mutant p53 has been shown to affect the transcription of a range of genes, as well as protein-protein interactions with transcription factors and other effectors; however, no one has intensively investigated and identified these proteins, or their MHC presented epitopes, from the viewpoint of their ability to act as targets for immunotherapeutic interventions. We investigated the molecular changes that occurred after the TP53 null osteosarcoma cells, SaOS-2, were transfected with one of two conformational p53-mutants, either R175H or R273H. We then examined the phenotypic and functional changes using macroscopic observations, proliferation, gene expression and proteomics alongside immunopeptidome profiling of peptide antigen presentation in the context of major histocompatibility complex (MHC) class I molecules. We identified several candidate proteins in both TP53 mutant cell lines with differential expression when compared to the TP53 null vector control, SaOS-V. Quantitative SWATH proteomics combined with immune-peptidome analysis of the class-I eluted peptides identified several epitopes presented on pMHC and in silico analysis shortlisted which antigens were expressed in a range of cancerous but not adjacent healthy tissues. Out of all the candidates, KLC1 and TOP2A showed high levels of expression in every tumor type examined. From these proteins, three A2 and four pan HLA-A epitopes were identified in both R175H and R273H from TOP2A. We have now provided a short list of future immunotherapy targets for the treatment of cancers harboring mutated TP53.
RESUMO
BACKGROUND: Current treatments for castrate (hormone)-resistant prostate cancer (CRPC) remain limited and are not curative, with a median survival from diagnosis of 23 months. The PAP-specific Sipuleucel-T vaccine, which was approved by the FDA in 2010, increases the Overall Survival (OS) by 4 months, but is extremely expensive. We have previously shown that a 15 amino accid (AA) PAP sequence-derived peptide could induce strong immune responses and delay the growth of murine TRAMP-C1 prostate tumors. We have now substituted one amino acid and elongated the sequence to include epitopes predicted to bind to several additional HLA haplotypes. Herein, we present the immunological properties of this 42mer-mutated PAP-derived sequence (MutPAP42mer). METHODS: The presence of PAP-135-143 epitope-specific CD8+ T cells in the blood of patients with prostate cancer (PCa) was assessed by flow cytometry using Dextramer™ technology. HHDII/DR1 transgenic mice were immunized with mutated and non-mutated PAP-derived 42mer peptides in the presence of CAF®09 or CpG ODN1826 (TLR-9 agonist) adjuvants. Vaccine-induced immune responses were measured by assessing the proportion and functionality of splenic PAP-specific T cells in vitro. RESULTS: PAP-135-143 epitope-specific CD8+ T cells were detected in the blood of patients with PCa and stimulation of PBMCs from patients with PCa with mutPAP42mer enhanced their capacity to kill human LNCaP PCa target cells expressing PAP. The MutPAP42mer peptide was significantly more immunogenic in HHDII/DR1 mice than the wild type sequence, and immunogenicity was further enhanced when combined with the CAF®09 adjuvant. The vaccine induced secretory (IFNγ and TNFα) and cytotoxic CD8+ T cells and effector memory splenic T cells. CONCLUSIONS: The periphery of patients with PCa exhibits immune responsiveness to the MutPAP42mer peptide and immunization of mice induces/expands T cell-driven, wild-type PAP immunity, and therefore, has the potential to drive protective anti-tumor immunity in patients with PCa.
RESUMO
PURPOSE: The stromal and immune bone marrow (BM) landscape is emerging as a crucial determinant for acute myeloid leukemia (AML). Regulatory T cells (Treg) are enriched in the AML microenvironment, but the underlying mechanisms are poorly elucidated. Here, we addressed the effect of IFNγ released by AML cells in BM Treg induction and its impact on AML prognosis. EXPERIMENTAL DESIGN: BM aspirates from patients with AML were subdivided according to IFNG expression. Gene expression profiles in INFγhigh and IFNγlow samples were compared by microarray and NanoString analysis and used to compute a prognostic index. The IFNγ release effect on the BM microenvironment was investigated in mesenchymal stromal cell (MSC)/AML cell cocultures. In mice, AML cells silenced for ifng expression were injected intrabone. RESULTS: IFNγhigh AML samples showed an upregulation of inflammatory genes, usually correlated with a good prognosis in cancer. In contrast, in patients with AML, high IFNG expression was associated with poor overall survival. Notably, IFNγ release by AML cells positively correlated with a higher BM suppressive Treg frequency. In coculture experiments, IFNγhigh AML cells modified MSC transcriptome by upregulating IFNγ-dependent genes related to Treg induction, including indoleamine 2,3-dioxygenase 1 (IDO1). IDO1 inhibitor abrogated the effect of IFNγ release by AML cells on MSC-derived Treg induction. In vivo, the genetic ablation of IFNγ production by AML cells reduced MSC IDO1 expression and Treg infiltration, hindering AML engraftment. CONCLUSIONS: IFNγ release by AML cells induces an immune-regulatory program in MSCs and remodels BM immunologic landscape toward Treg induction, contributing to an immunotolerant microenvironment. See related commentary by Ferrell and Kordasti, p. 2986.
Assuntos
Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Animais , Medula Óssea/metabolismo , Células da Medula Óssea , Interferon gama/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Linfócitos T Reguladores/imunologia , Microambiente TumoralRESUMO
The survival strategies of infectious organisms have inspired many therapeutics over the years. Indeed the advent of oncolytic viruses (OVs) exploits the uncontrolled replication of cancer cells for production of their progeny resulting in a cancer-targeting treatment that leaves healthy cells unharmed. Their success against inaccessible tumors however, is highly variable due to inadequate tumor targeting following systemic administration. Coassembling herpes simplex virus (HSV1716) with biocompatible magnetic nanoparticles derived from magnetotactic bacteria enables tumor targeting from circulation with magnetic guidance, protects the virus against neutralizing antibodies and thereby enhances viral replication within tumors. This approach additionally enhances the intratumoral recruitment of activated immune cells, promotes antitumor immunity and immune cell death, thereby inducing tumor shrinkage and increasing survival in a syngeneic mouse model of breast cancer by 50%. Exploiting the properties of such a nanocarrier, rather than tropism of the virus, for active tumor targeting offers an exciting, novel approach for enhancing the bioavailability and treatment efficacy of tumor immunotherapies for disseminated neoplasms.
Assuntos
Herpesvirus Humano 1 , Neoplasias , Terapia Viral Oncolítica , Animais , Bactérias , Linhagem Celular Tumoral , Camundongos , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Preparações FarmacêuticasRESUMO
BACKGROUND: The long non-coding RNA (lncRNA), MALAT1, plays a key role in the development of different cancers, and its expression is associated with worse prognosis in patients. However, its mechanism of action and its regulation are not well known in prostate cancer (PCa). A general mechanism of action of lncRNAs is their interaction with other epigenetic regulators including microRNAs (miRNAs). METHODS: Using lentiviral stable miRNA transfection together with cell biology functional assays and gene expression/target analysis, we investigated the interaction between MALAT1 and miR-423-5p, defined as a target with in silico prediction analysis, in PCa. RESULTS: Through bioinformatic analysis of data available from TCGA, we have found that MALAT1 expression correlates with high Gleason grade, metastasis occurrence, and reduced survival in PCa patients. These findings were validated on a TMA of PCa showing a significant correlation between MALAT1 expression with both stage and grading. We report that, in PCa cells, MALAT1 expression and activity is regulated by miR-423-5p that binds MALAT1, downregulates its expression and inhibits its activity in promoting proliferation, migration, and invasion. Using NanoString analysis, we unraveled downstream cell pathways that were affected by miR-423-5p expression and MALAT1 downregulation and identified several alterations in genes that are involved in metastatic response and angiogenic pathways. In addition, we showed that the overexpression of miR-423-5p increases survival and decreases metastases formation in a xenograft mouse model. CONCLUSIONS: We provide evidence on the role of MALAT1 in PCa tumorigenesis and progression. Also, we identify a direct interaction between miR-423-5p and MALAT1, which results in the suppression of MALAT1 action in PCa.
Assuntos
MicroRNAs/metabolismo , Neoplasias da Próstata/genética , Animais , Proliferação de Células , Humanos , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica , TransfecçãoRESUMO
BACKGROUND AND AIM: Anti-tumor necrosis factor-α (anti-TNF-α) agents have been used for inflammatory bowel disease; however, it has up to 30% nonresponse rate. Identifying molecular pathways and finding reliable diagnostic biomarkers for patient response to anti-TNF-α treatment are needed. METHODS: Publicly available transcriptomic data from inflammatory bowel disease patients receiving anti-TNF-α therapy were systemically collected and integrated. In silico flow cytometry approaches and Metascape were applied to evaluate immune cell populations and to perform gene enrichment analysis, respectively. Genes identified within enrichment pathways validated in neutrophils were tracked in an anti-TNF-α-treated animal model (with lipopolysaccharide-induced inflammation). The receiver operating characteristic curve was applied to all genes to identify the best prediction biomarkers. RESULTS: A total of 449 samples were retrieved from control, baseline, and after primary anti-TNF-α therapy or placebo. No statistically significant differences were observed between anti-TNF-α treatment responders and nonresponders at baseline in immune microenvironment scores. Neutrophil, endothelial cell, and B-cell populations were higher in baseline nonresponders, and chemotaxis pathways may contribute to the treatment resistance. Genes related to chemotaxis pathways were significantly upregulated in lipopolysaccharide-induced neutrophils, but no statistically significant changes were observed in neutrophils treated with anti-TNF-α. Interleukin 13 receptor subunit alpha 2 (IL13RA2) is the best predictor (receiver operating characteristic curve: 80.7%, 95% confidence interval: 73.8-87.5%), with a sensitivity of 68.13% and specificity of 84.93%, and significantly higher in nonresponders compared with responders (P < 0.0001). CONCLUSIONS: Hyperactive neutrophil chemotaxis influences responses to anti-TNF-α treatment, and IL13RA2 is a potential biomarker to predict anti-TNF-α treatment response.
Assuntos
Quimiotaxia , Doenças Inflamatórias Intestinais , Neutrófilos , Inibidores do Fator de Necrose Tumoral , Animais , Quimiotaxia/fisiologia , Resistência a Medicamentos , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Neutrófilos/fisiologia , Inibidores do Fator de Necrose Tumoral/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/efeitos dos fármacosRESUMO
The contribution of the bone marrow (BM) immune microenvironment to acute myeloid leukemia (AML) development is well-known, but its prognostic significance is still elusive. Indoleamine 2,3-dioxygenase 1 (IDO1), which is negatively regulated by the BIN1 proto-oncogene, is an interferon-γ-inducible mediator of immune tolerance. With the aim to develop a prognostic IDO1-based immune gene signature, biological and clinical data of 982 patients with newly diagnosed, nonpromyelocytic AML were retrieved from public datasets and analyzed using established computational pipelines. Targeted transcriptomic profiles of 24 diagnostic BM samples were analyzed using the NanoString's nCounter platform. BIN1 and IDO1 were inversely correlated and individually predicted overall survival. PLXNC1, a semaphorin receptor involved in inflammation and immune response, was the IDO1-interacting gene retaining the strongest prognostic value. The incorporation of PLXNC1 into the 2-gene IDO1-BIN1 score gave rise to a powerful immune gene signature predicting survival, especially in patients receiving chemotherapy. The top differentially expressed genes between IDO1lowand IDO-1high and between PLXNC1lowand PLXNC1high cases further improved the prognostic value of IDO1 providing a 7- and 10-gene immune signature, highly predictive of survival and correlating with AML mutational status at diagnosis. Taken together, our data indicate that IDO1 is pivotal for the construction of an immune gene signature predictive of survival in AML patients. Given the emerging role of immunotherapies for AML, our findings support the incorporation of immune biomarkers into current AML classification and prognostication algorithms.
Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Leucemia Mieloide Aguda , Humanos , Tolerância Imunológica , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Prognóstico , Transcriptoma , Microambiente TumoralRESUMO
Recently, we have demonstrated that miR-423-5p modulates the growth and metastases of prostate cancer (PCa) cells both in vitro and in vivo. Here, we have studied the effects of miR-423-5p on the proteomic profile in order to identify its intracellular targets and the affected pathways. Applying a quantitative proteomic approach, we analyzed the effects on the protein expression profile of miR-423-5p-transduced PCa cells. Moreover, a computational analysis of predicted targets of miR-423-5p was carried out by using several target prediction tools. Proteomic analysis showed that 63 proteins were differentially expressed in miR-423-5-p-transfected LNCaP cells if compared to controls. Pathway enrichment analysis revealed that stable overexpression of miR-423-5p in LNCaP PCa cells induced inhibition of glycolysis and the metabolism of several amino acids and a parallel downregulation of proteins involved in transcription and hypoxia, the immune response through Th17-derived cytokines, inflammation via amphorin signaling, and ion transport. Moreover, upregulated proteins were related to the S phase of cell cycle, chromatin modifications, apoptosis, blood coagulation, and calcium transport. We identified seven proteins commonly represented in miR-423-5p targets and differentially expressed proteins (DEPs) and analyzed their expression and influence on the survival of PCa patients from publicly accessible datasets. Overall, our findings suggest that miR-423-5p induces alterations in glucose and amino acid metabolism in PCa cells paralleled by modulation of several tumor-associated processes.
Assuntos
MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , MicroRNAs/metabolismo , Proteômica , Neoplasias da Próstata/metabolismo , Próstata/patologia , Aminoácidos/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão GênicaRESUMO
Breast cancer bone metastasis is currently incurable, ~75% of patients with late-stage breast cancer develop disease recurrence in bone and available treatments are only palliative. We have previously shown that production of the pro-inflammatory cytokine interleukin-1B (IL-1B) by breast cancer cells drives bone metastasis in patients and in preclinical in vivo models. In the current study, we have investigated how IL-1B from tumour cells and the microenvironment interact to affect primary tumour growth and bone metastasis through regulation of the immune system, and whether targeting IL-1 driven changes to the immune response improves standard of care therapy for breast cancer bone metastasis. Using syngeneic IL-1B/IL1R1 knock out mouse models in combination with genetic manipulation of tumour cells to overexpress IL-1B/IL1R1, we found that IL-1B signalling elicited an opposite response in primary tumours compared with bone metastases. In primary tumours, IL-1B inhibited growth, by impairing the infiltration of innate immune cell subsets with potential anti-cancer functions but promoted enhanced tumour cell migration. In bone, IL-1B stimulated the development of osteolytic metastases. In syngeneic models of breast cancer, combining standard of care treatments (Doxorubicin and Zoledronic acid) with the IL-1 receptor antagonist Anakinra inhibited both primary tumour growth and metastasis. Anakinra had opposite effects on the immune response compared to standard of care treatment, and its anti-inflammatory signature was maintained in the combination therapy. These data suggest that targeting IL-1B signalling may provide a useful therapeutic approach to inhibit bone metastasis and improve efficacy of current treatments for breast cancer patients.
RESUMO
Many cancers, including myeloid leukaemia express the cancer testis antigen (CTA) DDX43 (HAGE) and/or the oncogene Wilms' tumour (WT1). Here we demonstrate that HAGE/WT1-ImmunoBody® vaccines derived T-cells can kill ex-vivo human CML cell lines expressing these antigens and significantly delay B16/HHDII+/DR1+/HAGE+/WT1+ tumour growth in the HHDII/DR1 mice and prolonged mouse survival in the prophylactic setting in comparison to non-immunised control mice. We show that immunisation of HHDII/DR1 mice with HAGE- and WT1-ImmunoBody® DNA vaccines in a prime-boost regime in two different flanks induce significant IFN-γ release by splenocytes from treated mice, and a significant level of cytotoxicity against tumour targets expressing HAGE/WT1 in vitro. More importantly, the combined HAGE/WT1 ImmunoBody® vaccine significantly delayed tumour growth in the B16/HHDII+/DR1+/HAGE+/WT1+ tumour model and prolonged mouse survival in the prophylactic setting in comparison to non-immunised control mice. Overall, this work demonstrates that combining both HAGE- and WT1-ImmunoBody® into a single vaccine is better than either vaccine alone. This combination vaccine could be given to patients whose cancer expresses HAGE and WT1 in parallel with existing therapies in order to decrease the chance of disease progression and relapse.
RESUMO
Objective: Bacterial and viral infectious triggers are linked to spondyloarthritis (SpA) including psoriatic arthritis (PsA) development, likely via dendritic cell activation. We investigated spinal entheseal plasmacytoid dendritic cells (pDCs) toll-like receptor (TLR)-7 and 9 activation and therapeutic modulation, including JAK inhibition. We also investigated if COVID-19 infection, a potent TLR-7 stimulator triggered PsA flares. Methods: Normal entheseal pDCs were characterized and stimulated with imiquimod and CpG oligodeoxynucleotides (ODN) to evaluate TNF and IFNα production. NanoString gene expression assay of total pDCs RNA was performed pre- and post- ODN stimulation. Pharmacological inhibition of induced IFNα protein was performed with Tofacitinib and PDE4 inhibition. The impact of SARS-CoV2 viral infection on PsA flares was evaluated. Results: CD45+HLA-DR+CD123+CD303+CD11c- entheseal pDCs were more numerous than blood pDCs (1.9 ± 0.8% vs 0.2 ± 0.07% of CD45+ cells, p=0.008) and showed inducible IFNα and TNF protein following ODN/imiquimod stimulation and were the sole entheseal IFNα producers. NanoString data identified 11 significantly upregulated differentially expressed genes (DEGs) including TNF in stimulated pDCs. Canonical pathway analysis revealed activation of dendritic cell maturation, NF-κB signaling, toll-like receptor signaling and JAK/STAT signaling pathways following ODN stimulation. Both tofacitinib and PDE4i strongly attenuated ODN induced IFNα. DAPSA scores elevations occurred in 18 PsA cases with SARS-CoV2 infection (9.7 ± 4 pre-infection and 35.3 ± 7.5 during infection). Conclusion: Entheseal pDCs link microbes to TNF/IFNα production. SARS-CoV-2 infection is associated with PsA Flares and JAK inhibition suppressed activated entheseal plasmacytoid dendritic Type-1 interferon responses as pointers towards a novel mechanism of PsA and SpA-related arthropathy.
Assuntos
Artrite Psoriásica/complicações , COVID-19/complicações , Células Dendríticas/metabolismo , Interferon-alfa/metabolismo , Janus Quinases/antagonistas & inibidores , Adjuvantes Imunológicos/farmacologia , Adulto , Idoso , COVID-19/genética , COVID-19/metabolismo , Biologia Computacional , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Células Dendríticas/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Imiquimode/farmacologia , Janus Quinases/metabolismo , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Oligonucleotídeos/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Transcriptoma , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Oncolytic viruses (OV) have been shown to activate the antitumor functions of specific immune cells like T cells. Here, we show OV can also reprogram tumor-associated macrophage (TAM) to a less immunosuppressive phenotype. Syngeneic, immunocompetent mouse models of primary breast cancer were established using PyMT-TS1, 4T1, and E0771 cell lines, and a metastatic model of breast cancer was established using the 4T1 cell line. Tumor growth and overall survival was assessed following intravenous administration of the OV, HSV1716 (a modified herpes simplex virus). Infiltration and function of various immune effector cells was assessed by NanoString, flow cytometry of dispersed tumors, and immunofluorescence analysis of tumor sections. HSV1716 administration led to marked tumor shrinkage in primary mammary tumors and a decrease in metastases. This was associated with a significant increase in the recruitment/activation of cytotoxic T cells, a reduction in the presence of regulatory T cells and the reprograming of TAMs towards a pro-inflammatory, less immunosuppressive phenotype. These findings were supported by in vitro data demonstrating that human monocyte-derived macrophages host HSV1716 replication, and that this led to immunogenic macrophage lysis. These events were dependent on macrophage expression of proliferating cell nuclear antigen (PCNA). Finally, the antitumor effect of OV was markedly diminished when TAMs were depleted using clodronate liposomes. Together, our results show that TAMs play an essential role in support of the tumoricidal effect of the OV, HSV1716-they both host viral replication via a novel, PCNA-dependent mechanism and are reprogramed to express a less immunosuppressive phenotype.
Assuntos
Macrófagos/metabolismo , Vírus Oncolíticos/patogenicidade , Animais , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Mamárias Animais , Camundongos , TransfecçãoRESUMO
Approximately 50% of acute myeloid leukemia (AML) patients do not respond to induction therapy (primary induction failure [PIF]) or relapse after <6 months (early relapse [ER]). We have recently shown an association between an immune-infiltrated tumor microenvironment (TME) and resistance to cytarabine-based chemotherapy but responsiveness to flotetuzumab, a bispecific DART antibody-based molecule to CD3ε and CD123. This paper reports the results of a multicenter, open-label, phase 1/2 study of flotetuzumab in 88 adults with relapsed/refractory AML: 42 in a dose-finding segment and 46 at the recommended phase 2 dose (RP2D) of 500 ng/kg per day. The most frequent adverse events were infusion-related reactions (IRRs)/cytokine release syndrome (CRS), largely grade 1-2. Stepwise dosing during week 1, pretreatment dexamethasone, prompt use of tocilizumab, and temporary dose reductions/interruptions successfully prevented severe IRR/CRS. Clinical benefit accrued to PIF/ER patients showing an immune-infiltrated TME. Among 30 PIF/ER patients treated at the RP2D, the complete remission (CR)/CR with partial hematological recovery (CRh) rate was 26.7%, with an overall response rate (CR/CRh/CR with incomplete hematological recovery) of 30.0%. In PIF/ER patients who achieved CR/CRh, median overall survival was 10.2 months (range, 1.87-27.27), with 6- and 12-month survival rates of 75% (95% confidence interval [CI], 0.450-1.05) and 50% (95% CI, 0.154-0.846). Bone marrow transcriptomic analysis showed that a parsimonious 10-gene signature predicted CRs to flotetuzumab (area under the receiver operating characteristic curve = 0.904 vs 0.672 for the European LeukemiaNet classifier). Flotetuzumab represents an innovative experimental approach associated with acceptable safety and encouraging evidence of activity in PIF/ER patients. This trial was registered at www.clinicaltrials.gov as #NCT02152956.