Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12981, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839916

RESUMO

Micro RNAs (miRNAs, miRs) and relevant networks might exert crucial functions during differential host cell infection by the different Leishmania species. Thus, a bioinformatic analysis of microarray datasets was developed to identify pivotal shared biomarkers and miRNA-based regulatory networks for Leishmaniasis. A transcriptomic analysis by employing a comprehensive set of gene expression profiling microarrays was conducted to identify the key genes and miRNAs relevant for Leishmania spp. infections. Accordingly, the gene expression profiles of healthy human controls were compared with those of individuals infected with Leishmania mexicana, L. major, L. donovani, and L. braziliensis. The enrichment analysis for datasets was conducted by utilizing EnrichR database, and Protein-Protein Interaction (PPI) network to identify the hub genes. The prognostic value of hub genes was assessed by using receiver operating characteristic (ROC) curves. Finally, the miRNAs that interact with the hub genes were identified using miRTarBase, miRWalk, TargetScan, and miRNet. Differentially expressed genes were identified between the groups compared in this study. These genes were significantly enriched in inflammatory responses, cytokine-mediated signaling pathways and granulocyte and neutrophil chemotaxis responses. The identification of hub genes of recruited datasets suggested that TNF, SOCS3, JUN, TNFAIP3, and CXCL9 may serve as potential infection biomarkers and could deserve value as prognostic biomarkers for leishmaniasis. Additionally, inferred data from miRWalk revealed a significant degree of interaction of a number of miRNAs (hsa-miR-8085, hsa-miR-4673, hsa-miR-4743-3p, hsa-miR-892c-3p, hsa-miR-4644, hsa-miR-671-5p, hsa-miR-7106-5p, hsa-miR-4267, hsa-miR-5196-5p, and hsa-miR-4252) with the majority of the hub genes, suggesting such miRNAs play a crucial role afterwards parasite infection. The hub genes and hub miRNAs identified in this study could be potentially suggested as therapeutic targets or biomarkers for the management of leishmaniasis.


Assuntos
Biomarcadores , Biologia Computacional , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Leishmaniose , MicroRNAs , Mapas de Interação de Proteínas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Leishmaniose/genética , Leishmaniose/parasitologia , Biologia Computacional/métodos , Biomarcadores/metabolismo , Perfilação da Expressão Gênica/métodos , Mapas de Interação de Proteínas/genética , Transcriptoma , Leishmania/genética
2.
Biotechnol Appl Biochem ; 71(1): 5-16, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37743549

RESUMO

Suicide gene therapy involves introducing viral or bacterial genes into tumor cells, which enables the conversion of a nontoxic prodrug into a toxic-lethal drug. The application of the bacterial cytosine deaminase (bCD)/5-fluorocytosine (5-FC) approach has been beneficial and progressive within the current field of cancer therapy because of the enhanced bystander effect. The basis of this method is the preferential deamination of 5-FC to 5-fluorouracil by cancer cells expressing cytosine deaminase (CD), which strongly inhibits DNA synthesis and RNA function, effectively targeting tumor cells. However, the poor binding affinity of toward 5-FC compared to the natural substrate cytosine and/or inappropriate thermostability limits the clinical applications of this gene therapy approach. Nowadays, many genetic engineering studies have been carried out to solve and improve the activity of this enzyme. In the current review, we intend to discuss the biotechnological aspects of Escherichia coli CD, including its structure, functions, molecular cloning, and protein engineering. We will also explore its relevance in cancer clinical trials. By examining these aspects, we hope to provide a thorough understanding of E. coli CD and its potential applications in cancer therapy.


Assuntos
Citosina Desaminase , Pró-Fármacos , Humanos , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Escherichia coli/metabolismo , Fluoruracila/química , Flucitosina/farmacologia , Flucitosina/metabolismo , Terapia Genética , Pró-Fármacos/metabolismo
3.
Crit Rev Oncol Hematol ; 194: 104249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145831

RESUMO

BACKGROUND: Cervical cancer, a pernicious gynecological malignancy, causes the mortality of hundreds of thousands of females worldwide. Despite a considerable decline in mortality, the surging incidence rate among younger women has raised serious concerns. Immortality is the most important characteristic of tumor cells, hence the carcinogenesis of cervical cancer cells pivotally requires compromising with cell death mechanisms. METHODS: The current study comprehensively reviewed the mechanisms of non-apoptotic cell death programs to provide possible disease management strategies. RESULTS: Comprehensive evidence has stated that focusing on necroptosis, pyroptosis, and autophagy for disease management is associated with significant limitations such as insufficient understanding, contradictory functions, dependence on disease stage, and complexity of intracellular pathways. However, ferroptosis represents a predictable role in cervix carcinogenesis, and ferroptosis-related genes demonstrate a remarkable correlation with patient survival and clinical outcomes. CONCLUSION: Ferroptosis may be an appropriate option for disease management strategies from predicting prognosis to treatment.


Assuntos
Ferroptose , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/terapia , Autofagia , Carcinogênese , Morte Celular
4.
Cell Biochem Funct ; 41(8): 959-977, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787641

RESUMO

Recently, efforts have been made to recognize the precise reason(s) for transplant failure and the process of rejection utilizing the molecular signature. Most transplant recipients do not appreciate the unknown length of survival of allogeneic grafts with the existing standard of care. Two noteworthy immunological pathways occur during allogeneic transplant rejection. A nonspecific innate immune response predominates in the early stages of the immune reaction, and allogeneic antigens initiate a donor-specific adaptive reaction. Though the adaptive response is the major cause of allograft rejection, earlier pro-inflammatory responses that are part of the innate immune response are also regarded as significant in graft loss. The onset of the innate and adaptive immune response causes chronic and acute transplant rejection. Currently employed immunosuppressive medications have shown little or no influence on chronic rejection and, as a result, on overall long-term transplant survival. Furthermore, long-term pharmaceutical immunosuppression is associated with side effects, toxicity, and an increased risk of developing diseases, both infectious and metabolic. As a result, there is a need for the development of innovative donor-specific immunosuppressive medications to regulate the allorecognition pathways that induce graft loss and to reduce the side effects of immunosuppression. Efferocytosis is an immunomodulatory mechanism with fast and efficient clearance of apoptotic cells (ACs). As such, AC therapy strategies have been suggested to limit transplant-related sequelae. Efferocytosis-based medicines/treatments can also decrease the use of immunosuppressive drugs and have no detrimental side effects. Thus, this review aims to investigate the impact of efferocytosis on transplant rejection/tolerance and identify approaches using AC clearance to increase transplant viability.


Assuntos
Rejeição de Enxerto , Tolerância ao Transplante , Rejeição de Enxerto/prevenção & controle , Terapia de Imunossupressão , Apoptose
5.
Cell Tissue Res ; 394(1): 55-74, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37480408

RESUMO

Endometriosis is a gynecological inflammatory disorder characterized by the development of endometrial-like cells outside the uterine cavity. This disease is associated with a wide range of clinical presentations, such as debilitating pelvic pain and infertility issues. Endometriosis diagnosis is not easily discovered by ultrasound or clinical examination. Indeed, difficulties in noninvasive endometriosis diagnosis delay the confirmation and management of the disorder, increase symptoms, and place a significant medical and financial burden on patients. So, identifying specific and sensitive biomarkers for this disease should therefore be a top goal. Exosomes are extracellular vesicles secreted by most cell types. They transport between cells' bioactive molecules such as noncoding RNAs and proteins. MicroRNAs and long noncoding RNAs which are key molecules transferred by exosomes have recently been identified to have a significant role in endometriosis by modulating different proteins and their related genes. As a result, the current review focuses on exosomal micro-and-long noncoding RNAs that are involved in endometriosis disease. Furthermore, major molecular mechanisms linking corresponding RNA molecules to endometriosis development will be briefly discussed to better clarify the potential functions of exosomal noncoding RNAs in the therapy and diagnosis of endometriosis.


Assuntos
Endometriose , Exossomos , MicroRNAs , RNA Longo não Codificante , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Endometriose/diagnóstico , Endometriose/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Biomarcadores/metabolismo , Exossomos/genética , Exossomos/metabolismo
6.
Clin Chim Acta ; 551: 117618, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38375624

RESUMO

The term "gynecologic cancer" pertains to neoplasms impacting the reproductive tissues and organs of women encompassing the endometrium, vagina, cervix, uterus, vulva, and ovaries. The progression of gynecologic cancer is linked to various molecular mechanisms. Historically, cancer research primarily focused on protein-coding genes. However, recent years have unveiled the involvement of non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs (LncRNAs), and circular RNAs, in modulating cellular functions within gynecological cancer. Substantial evidence suggests that ncRNAs may wield a dual role in gynecological cancer, acting as either oncogenic or tumor-suppressive agents. Numerous clinical trials are presently investigating the roles of ncRNAs as biomarkers and therapeutic agents. These endeavors may introduce a fresh perspective on the diagnosis and treatment of gynecological cancer. In this overview, we highlight some of the ncRNAs associated with gynecological cancers.


Assuntos
Ginecologia , MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , Feminino , RNA não Traduzido/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias/tratamento farmacológico
7.
Anticancer Drugs ; 33(1): e680-e685, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459460

RESUMO

Precursor B-cell acute lymphoblastic leukemia (B-ALL), a highly diverse disease, is the most widespread pediatric malignancy characterized by cytogenetic and molecular abnormalities such as altered microRNA (miR) expression signatures. MiRs are a class of short noncoding RNAs. Dysregulation in the expression of miRs plays a crucial role in different types of cancers. Vincristine is an antineoplastic drug with a broad spectrum of activity against different hematologic malignancies and is the first-line treatment for B-ALL. Previous studies have proposed miR-17 and miR-181/b as oncomirs and miR-34/a as a tumor suppressor in Nalm6 cells, thus in the current study, we investigated the effects of vincristine treatment on the expression of miR-17, miR-34/a and miR-181/b expression levels. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay was conducted to estimate the optimal concentration of vincristine in the Nalm-6 cell line. Expression of miRs was calculated using real-time PCR. Our results showed significant downregulation of miR-17 (FC = 0.226; P < 0.0004) in Nalm6 cells after vincristine treatment. Conversely, miR-34/a (FC = 4.823; P < 0.0001) was significantly upregulated. Also, the expression of miR-181/b (FC = 0.156; P < 0.3465) was not significantly different between the vincristine treated group and the control group. In conclusion, it is proposed that one of the mechanisms by which vincristine improves B-ALL is by modulating the expression of specific miRs. These specific miRs will serve as good diagnostic and prognostic biomarkers.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , MicroRNAs/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Vincristina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo , Humanos , Vincristina/administração & dosagem
8.
Mol Biol Rep ; 49(3): 2421-2432, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34850336

RESUMO

Resistance of gastrointestinal (GI) cancer cells to therapeutic agents are one of the major problems in treating this type of cancer. Although the exact mechanism of drug resistance has not yet been fully elucidated, various factors have been identified as contributing factors involved in this process. Several studies have revealed the role of exosomes, especially exosomal microRNAs (miRNAs), in GI tumorigenesis, invasion, angiogenesis, and drug resistance. Exosomes, a type of small extracellular vesicles (EVs), are originated from endosomes and are released into the extracellular environment and body fluids by different cell types. Exosomes mediate cell-cell communication by transferring different cargos, including miRNAs, between parent and recipient cells. Therefore, identifying these exosomal miRNAs and their functions in GI cancers might provide new clues to further explore the secret of this process and thus help in drug-resistance management. This review article will discuss the roles of exosomal miRNAs and their mechanisms of action in drug resistance of different types of GI cancer cells (e.g., stomach, esophagus, liver, pancreas, and colon) to therapeutic agents.


Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Neoplasias , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/genética , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , MicroRNAs/metabolismo , Neoplasias/metabolismo
9.
Iran J Med Sci ; 46(1): 52-60, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33487792

RESUMO

Background: The most prevalent cancer in women over the world is breast cancer. Immunotherapy is a promising method to effectively treat cancer patients. Among various immunotherapy methods, tumor antigens stimulate the immune system to eradicate cancer cells. Preferentially expressed antigen in melanoma (PRAME) is mainly overexpressed in breast cancer cells, and has no expression in normal tissues. FliCΔD2D3, as truncated flagellin (FliC), is an effective toll-like receptor 5 (TLR5) agonist with lower inflammatory responses. The objective of the present study was to utilize bioinformatics methods to design a chimeric protein against breast cancer. Methods: The physicochemical properties, solubility, and secondary structures of PRAME+FliCΔD2D3 were predicted using the tools ProtParam, Protein-sol, and GOR IV, respectively. The 3D structure of the chimeric protein was built using I-TASSER and refined with GalaxyRefine, RAMPAGE, and PROCHECK. ANTIGENpro and VaxiJen were used to evaluate protein antigenicity, and allergenicity was checked using AlgPred and Allergen FP. Major histocompatibility complex )MHC( and cytotoxic T-lymphocytes )CTL( binding peptides were predicted using HLApred and CTLpred. Finally, B-cell continuous and discontinuous epitopes were predicted using ABCpred and ElliPro, respectively. Results: The stability and solubility of PRAME+FliCΔD2D3 were analyzed, and its secondary and tertiary structures were predicted. The results showed that the derived peptides could bind to MHCs and CTLs. The designed chimeric protein possessed both linear and conformational epitopes with a high binding affinity to B-cell epitopes. Conclusion: PRAME+FliCΔD2D3 is a stable and soluble chimeric protein that can stimulate humoral and cellular immunity. The obtained results can be utilized for the development of an experimental vaccine against breast cancer.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias da Mama/prevenção & controle , Simulação por Computador/estatística & dados numéricos , Antígenos de Neoplasias/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/normas , Vacinas Anticâncer/uso terapêutico , Epitopos de Linfócito B/imunologia , Feminino , Humanos , Irã (Geográfico)
10.
Pharmgenomics Pers Med ; 13: 375-383, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32943906

RESUMO

INTRODUCTION: MicroRNAs (miRNAs) are recognized as major contributors in various cardiovascular diseases, such as heart failure (HF). These small noncoding RNAs that posttranscriptionally control target genes are involved in regulating different pathophysiological processes including cardiac proliferation, ifferentiation, hypertrophy, and fibrosis. Although carvedilol, a ß-adrenergic blocker, and a drug of choice in HF produce cytoprotective actions against cardiomyocyte hypertrophy, the mechanisms are poorly understood. Here we proposed that the expression of hypertrophic-specific miRNAs (miR-1, miR-133, miR-208, and miR-214) might be linked to beneficial effects of carvedilol. METHODS: The levels of four hypertrophic-specific miRNAs were measured in the sera of 35 patients with systolic HF receiving carvedilol (treated) and 20 HF patients not receiving any ß-blockers (untreated) as well as 17 nonHF individuals (healthy) using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Systolic HF was defined as left ventricular ejection fraction <50% by transthoracic echocardiography. RESULTS: We demonstrated that miR-1 and miR-214 were significantly upregulated in the treated group compared to the untreated group (P=0.014 and 5.3-fold, 0.033 and 4.2-fold, respectively). However, miR-133 and miR-208 did not show significant difference in expression between these two study groups. MiR-1 was significantly downregulated in the untreated group compared with healthy individuals (P=0.019 and 0.14-fold). CONCLUSION: In conclusion, it might be postulated that one of the mechanisms by which carvedilol may exert its cardioprotective effects can be through increasing miR-1 and miR-214 expressions which may also serve as a potential therapeutic target in patients with systolic HF in future.

11.
Cell Biosci ; 10: 32, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32175075

RESUMO

Ovarian cancer is known as a serious malignancy that affects women's reproductive tract and can considerably threat their health. A wide range of molecular mechanisms and genetic modifications have been involved in ovarian cancer pathogenesis making it difficult to develop effective therapeutic platforms. Hence, discovery and developing new therapeutic approaches are required. Medicinal plants, as a new source of drugs, could potentially be used alone or in combination with other medicines in the treatment of various cancers such as ovarian cancer. Among various natural compounds, quercetin has shown great anti-cancer and anti-inflammatory properties. In vitro and in vivo experiments have revealed that quercetin possesses a cytotoxic impact on ovarian cancer cells. Despite obtaining good results both in vitro and in vivo, few clinical studies have assessed the anti-cancer effects of quercetin particularly in the ovarian cancer. Therefore, it seems that further clinical studies may introduce quercetin as therapeutic agent alone or in combination with other chemotherapy drugs to the clinical setting. Here, we not only summarize the anti-cancer effects of quercetin but also highlight the therapeutic effects of quercetin in the ovarian cancer.

12.
Curr Pharm Des ; 25(33): 3563-3577, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31470781

RESUMO

Long noncoding RNAs (lncRNAs) constitute large portions of the mammalian transcriptome which appeared as a fundamental player, regulating various cellular mechanisms. LncRNAs do not encode proteins, have mRNA-like transcripts and frequently processed similar to the mRNAs. Many investigations have determined that lncRNAs interact with DNA, RNA molecules or proteins and play a significant regulatory function in several biological processes, such as genomic imprinting, epigenetic regulation, cell cycle regulation, apoptosis, and differentiation. LncRNAs can modulate gene expression on three levels: chromatin remodeling, transcription, and post-transcriptional processing. The majority of the identified lncRNAs seem to be transcribed by the RNA polymerase II. Recent evidence has illustrated that dysregulation of lncRNAs can lead to many human diseases, in particular, cancer. The aberrant expression of lncRNAs in malignancies contributes to the dysregulation of proliferation and differentiation process. Consequently, lncRNAs can be useful to the diagnosis, treatment, and prognosis, and have been characterized as potential cancer markers as well. In this review, we highlighted the role and molecular mechanisms of lncRNAs and their correlation with some of the cancers.


Assuntos
Epigênese Genética , Neoplasias/genética , RNA Longo não Codificante/genética , Animais , Montagem e Desmontagem da Cromatina , Humanos , Processamento de Proteína Pós-Traducional , Transcriptoma
13.
J Ovarian Res ; 12(1): 84, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481095

RESUMO

Circular RNAs (circRNAs) are a class of long non-coding RNAs (lncRNAs) which have a circular and closed loop structure. They are ubiquitous, stable, conserved and diverse RNA molecules with a range of activities such as translation and splicing regulation, which are able to interacting with RNA-binding proteins and specially miRNA sponge. The expression patterns of the circRNAs exhibited tissue specificity and also, step and stage specificity. Accumulating evidences approved the critical role of circular RNAs in many cancers such as ovarian cancer. Given that these molecules exert their effects through multiple cellular and molecular mechanisms (i.e., angiogenesis, apoptosis, growth, and metastasis) which are involved in cancer pathogenesis, circular RNAs, in particular, act by controlling cell proliferation in ovarian cancer, so that, it has been shown that the deregulation of these molecules is associated with initiation and progression of ovarian cancer. Therefore, they are attractive molecules which have introduced them as cancer biomarkers. Moreover, they could be used as new therapeutic candidates for developing novel treatment strategies. Here, for first time, we have provided a comprehensive review on the recent knowledge of circular RNAs and their pathological roles in the ovarian cancer.


Assuntos
Neoplasias Ovarianas/genética , RNA Circular , Animais , Feminino , Humanos
14.
J Cell Biochem ; 120(8): 13156-13167, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30912184

RESUMO

Precursor B-cell acute lymphoblastic leukemia (B-ALL) is the most prevalent pediatric cancer. DNA methylation and changes in the microRNAs (miRNAs) expression are known to be important causes of B-ALL. Decitabine as a DNA methyltransferase inhibitor agent is able to induce hypomethylation in several tumor suppressor genes. Much evidence has proven BTG2, PPP1CA, and PTEN act as tumor suppressor genes in many malignancies. In this case control study, the messenger RNA (mRNA) expression of PPP1CA, BTG2, and PTEN genes using quantitative real-time polymerase chain reaction (rRT-PCR) in Nalm6 cell line and five patients suffer from ALL with mean age 5.6 years were determined in compare with seven normal healthy donors age and sex matched. qRT-PCR analysis revealed that the expression levels of PPP1CA, BTG2, and PTEN genes were significantly decreased in Nalm6 ([FC] = 0.46, [FC] = 0.046, [FC] = 0.54) and according to the Methylation-specific PCR (MSP) analysis, these genes were hypermethylated in Nalm6. In next step, the effects of decitabine treatment on the methylation and expression of these genes in association with changes in miR-125b, miR-17, and miR-181b expression levels were evaluated in optimal concentration 2.5 µM of decitabine. Our data showed that decitabine is able to restore the expression levels of aforementioned genes and downregulate expression levels of oncomiRs; including miR-125b, miR-17, and miR-181b in Nalm6 cell line. Therefore, it seems that decitabine can be used as a potential drug for the first line treatment of patients with B-ALL, but further in vivo investigation is necessary.


Assuntos
Decitabina/farmacologia , Proteínas Imediatamente Precoces/metabolismo , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Proteínas Imediatamente Precoces/genética , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Proteína Fosfatase 1/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA