Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Anat ; 240(2): 305-322, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34549428

RESUMO

Statistical data pertaining to anatomic variations of the human talus contain valuable information for advances in biological anthropology, diagnosis of the talar pathologies, and designing talar prostheses. A statistical shape model (SSM) can be a powerful data analysis tool for the anatomic variations of the talus. The main concern in constructing an SSM for the talus is establishing the true geometric correspondence between the talar geometries. The true correspondence complies with biological and/or mathematical homologies on the talar surfaces. In this study, we proposed a semi-automatic approach to establish a dense correspondence between talar surfaces discretized by triangular meshes. Through our approach, homologous salient surface features in the form of crest lines were detected on 49 talar surfaces. Then, the point-wise correspondence information of the crest lines was recruited to create posterior Gaussian process morphable models that non-rigidly registered the talar meshes and consequently established inter-mesh dense correspondence. The resultant correspondence perceptually represented the true correspondence as per our visual assessments. Having established the correspondence, we computed the mean shape using full generalized Procrustes analysis and constructed an SSM by means of principal component analysis. Anatomical variations and the mean shape of the talus were predicted by the SSM. As a clinically related application, we considered the mean shape and investigated the feasibility of designing universal talar prostheses. Our results suggest that the mean shape of (the shapes of) tali can be used as a scalable shape template for designing universal talar prostheses.


Assuntos
Tálus , Humanos , Modelos Estatísticos , Distribuição Normal , Análise de Componente Principal , Próteses e Implantes
2.
Int J Oral Maxillofac Implants ; 34(3): e21­e31, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30892284

RESUMO

PURPOSE: This study investigated the effect of implant length, diameter, and surface contact on the stresses developed in a fibular free flap. MATERIALS AND METHODS: Finite element (FE) models for dental implants placed in a patient-specific fibula were created using a patient-specific fibula CT scan and geometry files of commercially available dental implants. The FE models involved nine dental implants of different lengths and diameters: 3.5, 4.3, and 5.0 mm in diameter and 10.0, 11.5, and 13.0 mm in length. Three contact conditions between the implant and the fibular flap were investigated: complete fusion, friction, and smooth contact, representing complete osseointegration, a rough implant-bone interface, and no osseointegration, respectively. Finite element analysis was performed to examine the average von Mises stresses around the local implant-fibula interface within the fibula under a load of 500 N along the long axis of the implant and posterior-anterior and lateral-medial directions. RESULTS: Both the level of osseointegration and implant size had noticeable effects on the mechanical stress inside the fibula. The stress introduced to the fibula gradually decreased as the implant osseointegrated into the bone. An optimal implant size existed where the internal stresses were minimized; this trend was seen when investigating both the implant diameter and length. In this study, an implant with a diameter of 4.3 mm and length of 10 mm produced the lowest mechanical stresses overall. CONCLUSION: Both implant length and diameter were influential; stresses were seen to decrease to a minimum then subsequently increase as either dimension increased. Additionally, stresses in bone introduced by an implant decreased as the degree of interaction between the implant and fibula increased. Complete fusion between the implant and bone yielded the lowest stresses.


Assuntos
Retalhos de Tecido Biológico , Reconstrução Mandibular , Simulação por Computador , Implantes Dentários , Planejamento de Prótese Dentária , Análise do Estresse Dentário , Fíbula , Análise de Elementos Finitos , Humanos , Estresse Mecânico
3.
J Orthop Res ; 37(3): 655-664, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604892

RESUMO

In dysplastic infant hips undergoing abduction harness treatment, cartilage contact pressure is believed to have a role in therapeutic cartilage remodeling and also in the complication of femoral head avascular necrosis. To improve our understanding of the role of contact pressure in the remodeling and the complication, we modeled cartilage contact pressure in cartilaginous infant hips undergoing Pavlik harness treatment. In subject-specific finite element modeling, we simulated contact pressure of normal and dysplastic hips in Pavlik harness at 90° flexion and gravity-induced abduction angles of 40°, 60° and 80°. We demonstrated that morphologies of acetabulum and femoral head both affected contact pressure distributions. The simulations showed that in Pavlik harness, contact pressure was mainly distributed along anterior and posterior acetabulum, leaving the acetabular roof only lightly loaded (normal hip) or unloaded (dysplastic hip). From a mechanobiological perspective, these conditions may contribute to therapeutic remodeling of the joint in Pavlik harness. Furthermore, contact pressure increased with the angle of abduction, until at the extreme abduction angle (80°), the lateral femoral head also contacted the posterior acetabular edge. Contact pressure in this area could contribute to femoral head avascular necrosis by reducing flow in femoral head blood vessels. The contact pressure we simulated can plausibly account for both the therapeutic effects and main adverse effect of abduction harness treatment for developmental dysplasia of the hip. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.


Assuntos
Cartilagem Articular/fisiopatologia , Luxação Congênita de Quadril/fisiopatologia , Articulação do Quadril/fisiopatologia , Modelagem Computacional Específica para o Paciente , Fenômenos Biomecânicos , Feminino , Análise de Elementos Finitos , Luxação Congênita de Quadril/terapia , Humanos , Lactente , Masculino
4.
J Biomech Eng ; 140(7)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29715363

RESUMO

Developmental dysplasia of the hip (DDH) in infants under 6 months of age is typically treated by the Pavlik harness (PH). During successful PH treatment, a subluxed/dislocated hip is spontaneously reduced into the acetabulum, and DDH undergoes self-correction. PH treatment may fail due to avascular necrosis (AVN) of the femoral head. An improved understanding of mechanical factors accounting for the success/failure of PH treatment may arise from investigating articular cartilage contact pressure (CCP) within a hip during treatment. In this study, CCP in a cartilaginous infant hip was investigated through patient-specific finite element (FE) modeling. We simulated CCP of the hip equilibrated at 90 deg flexion at abduction angles of 40 deg, 60 deg, and 80 deg. We found that CCP was predominantly distributed on the anterior and posterior acetabulum, leaving the superior acetabulum (mainly superolateral) unloaded. From a mechanobiological perspective, hypothesizing that excessive pressure inhibits growth, our results qualitatively predicted increased obliquity and deepening of the acetabulum under such CCP distribution. This is the desired and observed therapeutic effect in successful PH treatment. The results also demonstrated increase in CCP as abduction increased. In particular, the simulation predicted large magnitude and concentrated CCP on the posterior wall of the acetabulum and the adjacent lateral femoral head at extreme abduction (80 deg). This CCP on lateral femoral head may reduce blood flow in femoral head vessels and contribute to AVN. Hence, this study provides insight into biomechanical factors potentially responsible for PH treatment success and complications.


Assuntos
Análise de Elementos Finitos , Articulação do Quadril , Equipamentos Ortopédicos , Modelagem Computacional Específica para o Paciente , Pressão , Fenômenos Biomecânicos , Cartilagem Articular , Luxação Congênita de Quadril/terapia , Humanos , Lactente
5.
Sci Rep ; 6: 24087, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27071447

RESUMO

Temporal fenestration has long been considered a key character to understand relationships amongst reptiles. In particular, the absence of the lower temporal bar (LTB) is considered one of the defining features of squamates (lizards and snakes). In a re-assessment of the borioteiioid lizard Polyglyphanodon sternbergi (Cretaceous, North America), we detected a heretofore unrecognized ontogenetic series, sexual dimorphism (a rare instance for Mesozoic reptiles), and a complete LTB, a feature only recently recognized for another borioteiioid, Tianyusaurus zhengi (Cretaceous, China). A new phylogenetic analysis (with updates on a quarter of the scorings for P. sternbergi) indicates not only that the LTB was reacquired in squamates, but it happened independently at least twice. An analysis of the functional significance of the LTB using proxies indicates that, unlike for T. zhengi, this structure had no apparent functional advantage in P. sternbergi, and it is better explained as the result of structural constraint release. The observed canalization against a LTB in squamates was broken at some point in the evolution of borioteiioids, whereas never re-occuring in other squamate lineages. This case of convergent evolution involves a mix of both adaptationist and structuralist causes, which is unusual for both living and extinct vertebrates.


Assuntos
Evolução Molecular , Fósseis/anatomia & histologia , Lagartos/genética , Crânio/anatomia & histologia , Animais , Feminino , Lagartos/anatomia & histologia , Lagartos/classificação , Masculino , Filogenia , Caracteres Sexuais
6.
Ultrasound Med Biol ; 41(8): 2173-90, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25957755

RESUMO

The therapeutic effect of low-intensity pulsed ultrasound on orthodontically induced inflammatory root resorption is believed to be brought about through mechanical signals induced by the low-intensity pulsed ultrasound. However, the stimulatory mechanism triggering dental cell response has not been clearly identified yet. The aim of this study was to evaluate possible relations between the amounts of new cementum regeneration and ultrasonic parameters such as pressure amplitude and time-averaged energy density. We used the finite-element method to simulate the previously published experiment on ultrasonic wave propagation in the dentoalveolar structure of beagle dogs. Qualitative relations between the thickness of the regenerated cementum in the experiment and the ultrasonic parameters were observed. Our results indicated that the areas of the root surface with greater ultrasonic pressure were associated with larger amounts of cementum regeneration. However, the establishment of reliable quantitative correlations between ultrasound parameters and cementum regeneration requires more experimental data and simulations.


Assuntos
Cementogênese/fisiologia , Modelos Biológicos , Regeneração/fisiologia , Espalhamento de Radiação , Terapia por Ultrassom/métodos , Ondas Ultrassônicas , Animais , Cementogênese/efeitos da radiação , Simulação por Computador , Cães , Doses de Radiação , Regeneração/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA