Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
PLoS One ; 18(5): e0284978, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37130139

RESUMO

The fungal genus Ophiocordyceps contains a number of insect pathogens. One of the best known of these is Ophiocordyceps sinensis, which is used in Chinese medicine and its overharvesting threatens sustainability; hence, alternative species are being sought. Ophiocordyceps robertsii, found in Australia and New Zealand, has been proposed to be a close relative to O. sinensis, but little is known about this species despite being also of historical significance. Here, O. robertsii strains were isolated into culture and high coverage draft genome sequences obtained and analyzed. This species has a large genome expansion, as also occurred in O. sinensis. The mating type locus was characterized, indicating a heterothallic arrangement whereby each strain has an idiomorphic region of two (MAT1-2-1, MAT1-2-2) or three (MAT1-1-1, MAT1-1-2, MAT1-1-3) genes flanked by the conserved APN2 and SLA2 genes. These resources provide a new opportunity for understanding the evolution of the expanded genome in the homothallic species O. sinensis, as well as capabilities to explore the pharmaceutical potential in a species endemic to Australia and New Zealand.


Assuntos
Genes Fúngicos Tipo Acasalamento , Hypocreales , Genes Fúngicos Tipo Acasalamento/genética , Hypocreales/genética , Sequência de Bases , Reprodução , Filogenia
2.
Mol Plant Microbe Interact ; 36(7): 393-396, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36947747

RESUMO

When comparing the requirements of diverse journals to publish microbial 'Genome Reports,' we noticed that some mostly focus on benchmarking universal single-copy orthologs scores as a quality measure, while the exclusion of possible contaminating sequences from genomic resources and the possible misidentification of the target microbes receive less attention. To deal with these quality issues, we suggest that DNA barcodes that are widely accepted for the identification of the target microbe species should be extracted from newly reported genome resources and included in phylogenetic analyses to confirm the identity of the sequenced microorganisms before Genome Reports are published. This approach, applied, for example, by the journal IMA Fungus, largely prevents the misidentification of the microbes that are targeted for whole-genome sequencing (WGS). In addition, contig similarity values, including GC content, remapping coverage of WGS reads, and BLASTN searches against the National Center for Biotechnology Information nucleotide database, would also reveal contamination issues. The values of these two recommendations to improve the publication criteria for microbial Genome Reports in diverse journals are demonstrated here through analyses of a draft genome published in Molecular Plant-Microbe Interactions and then retracted due to contaminations. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Genoma , Genômica , Filogenia , Sequenciamento Completo do Genoma , DNA
3.
Plants (Basel) ; 12(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36987047

RESUMO

Pyrethrum (Tanacetum cinerariifolium) cultivation in Australia, which accounts for the majority of global production of natural insecticidal pyrethrins, is affected by a persistent yield decline which in part is caused by a complex of pathogens. Globisporangium and Pythium species were isolated from crown and roots of pyrethrum plants showing stunting and brown discoloration of crown tissue, and from soil adjacent to diseased plants from yield-decline-affected sites in Tasmania and Victoria, Australia. Ten known Globisporangium species (Globisporangium attrantheridium, G. erinaceum, G. intermedium, G. irregulare, G. macrosporum, G. recalcitrans, G. rostratifingens, G. sylvaticum, G. terrestris and G. ultimum var. ultimum), two new Globisporangium species (Globisporangium capense sp. nov. and Globisporangium commune sp. nov.) and three Pythium species (Pythium diclinum/lutarium, P. tracheiphilum and P. vanterpoolii) were identified through morphological studies and multigene phylogenetic analyses using ITS and Cox1 sequences. Globisporangium ultimum var. ultimum, G. sylvaticum, G. commune sp. nov. and G. irregulare were most abundant. Globisporangium attrantheridium, G. macrosporum and G. terrestris were reported for the first time in Australia. Seven Globisporangium species were pathogenic on both pyrethrum seeds (in vitro assays) and seedlings (glasshouse bioassays), while two Globisporangium species and three Pythium species only caused significant symptoms on pyrethrum seeds. Globisporangium irregulare and G. ultimum var. ultimum were the most aggressive species, causing pyrethrum seed rot, seedling damping-off and significant plant biomass reduction. This is the first report of Globisporangium and Pythium species causing disease in pyrethrum globally and suggests that oomycete species in the family Pythiaceae may have an important role in the yield decline of pyrethrum in Australia.

4.
Microorganisms ; 11(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36838227

RESUMO

Globally, tomato is the second most cultivated vegetable crop next to potato, preferentially grown in temperate climates. Processing tomatoes are generally produced in field conditions, in which soilborne pathogens have serious impacts on tomato yield and quality by causing diseases of the tomato root system. Major processing tomato-producing countries have documented soilborne diseases caused by a variety of pathogens including bacteria, fungi, nematodes, and oomycetes, which are of economic importance and may threaten food security. Recent field surveys in the Australian processing tomato industry showed that plant growth and yield were significantly affected by soilborne pathogens, especially Fusarium oxysporum and Pythium species. Globally, different management methods have been used to control diseases such as the use of resistant tomato cultivars, the application of fungicides, and biological control. Among these methods, biocontrol has received increasing attention due to its high efficiency, target-specificity, sustainability and public acceptance. The application of biocontrol is a mix of different strategies, such as applying antagonistic microorganisms to the field, and using the beneficial metabolites synthesized by these microorganisms. This review provides a broad review of the major soilborne fungal/oomycete pathogens of the field processing tomato industry affecting major global producers, the traditional and biological management practices for the control of the pathogens, and the various strategies of the biological control for tomato soilborne diseases. The advantages and disadvantages of the management strategies are discussed, and highlighted is the importance of biological control in managing the diseases in field processing tomatoes under the pressure of global climate change.

5.
Sensors (Basel) ; 22(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36433241

RESUMO

The early detection of pathogen infections in plants has become an important aspect of integrated disease management. Although previous research demonstrated the idea of applying digital technologies to monitor and predict plant health status, there is no effective system for detecting pathogen infection before symptomatology appears. This paper presents the use of a low-cost and portable electronic nose coupled with machine learning (ML) models for early disease detection. Several artificial neural network models were developed to predict plant physiological data and classify processing tomato plants and soil samples according to different levels of pathogen inoculum by using e-nose outputs as inputs, plant physiological data, and the level of infection as targets. Results showed that the pattern recognition models based on different infection levels had an overall accuracy of 94.4-96.8% for tomato plants and between 94.81% and 96.22% for soil samples. For the prediction of plant physiological parameters (photosynthesis, stomatal conductance, and transpiration) using regression models or tomato plants, the overall correlation coefficient was 0.97-0.99, with very significant slope values in the range 0.97-1. The performance of all models shows no signs of under or overfitting. It is hence proven accurate and valid to use the electronic nose coupled with ML modeling for effective early disease detection of processing tomatoes and could also be further implemented to monitor other abiotic and biotic stressors.


Assuntos
Solanum lycopersicum , Nariz Eletrônico , Solo , Plantas , Aprendizado de Máquina
7.
Microbiol Resour Announc ; 11(11): e0071622, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36197296

RESUMO

Dickeya species cause soft rots on many commercial crops. Here, we present the draft genomes of Dickeya oryzae (BRIP 64262) and Dickeya zeae (BRIP 64263) isolates causing soft rot on banana (Musa spp.) and pineapple (Ananas comosus) plants, respectively. This expands the range of available genomes from plant-pathogenic Dickeya species.

8.
Front Genet ; 13: 900253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937986

RESUMO

Epigenomics has become a significant research interest at a time when rapid environmental changes are occurring. Epigenetic mechanisms mainly result from systems like DNA methylation, histone modification, and RNA interference. Epigenetic mechanisms are gaining importance in classical genetics, developmental biology, molecular biology, cancer biology, epidemiology, and evolution. Epigenetic mechanisms play important role in the action and interaction of plant genes during development, and also have an impact on classical plant breeding programs, inclusive of novel variation, single plant heritability, hybrid vigor, plant-environment interactions, stress tolerance, and performance stability. The epigenetics and epigenomics may be significant for crop adaptability and pliability to ambient alterations, directing to the creation of stout climate-resilient elegant crop cultivars. In this review, we have summarized recent progress made in understanding the epigenetic mechanisms in plant responses to biotic and abiotic stresses and have also tried to provide the ways for the efficient utilization of epigenomic mechanisms in developing climate-resilient crop cultivars, especially in chickpea, and other legume crops.

9.
Front Plant Sci ; 13: 925107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812984

RESUMO

Net blotches caused by Pyrenophora teres are important foliar fungal diseases of barley and result in significant yield losses of up to 40%. The two types of net blotch, net-form net blotch and spot-form net blotch, are caused by P. teres f. teres (Ptt) and P. teres f. maculata (Ptm), respectively. This study is the first to use a cross between Ptt and Ptm to identify quantitative trait loci (QTL) associated with virulence and leaf symptoms. A genetic map consisting of 1,965 Diversity Arrays Technology (DArT) markers was constructed using 351 progenies of the Ptt/Ptm cross. Eight barley cultivars showing differential reactions to the parental isolates were used to phenotype the hybrid progeny isolates. Five QTL associated with virulence and four QTL associated with leaf symptoms were identified across five linkage groups. Phenotypic variation explained by these QTL ranged from 6 to 16%. Further phenotyping of selected progeny isolates on 12 more barley cultivars revealed that three progeny isolates are moderately to highly virulent across these cultivars. The results of this study suggest that accumulation of QTL in hybrid isolates can result in enhanced virulence.

10.
Genome Biol Evol ; 14(6)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35647618

RESUMO

Charcoal rot is an important soilborne disease caused by a range of Macrophomina species, which affects a broad range of commercially important crops worldwide. Even though Macrophomina species are fungal pathogens of substantial economic importance, their mechanism of pathogenicity and host spectrum are poorly understood. There is an urgent need to better understand the biology, epidemiology, and evolution of Macrophomina species, which, in turn, will aid in improving charcoal rot management strategies. Here, we present the first high-quality genome assembly and annotation of Macrophomina tecta strain BRIP 70781 associated with charcoal rot symptoms on sorghum. Hybrid assembly integrating long reads generated by Oxford Nanopore Technology and short Illumina paired-end reads resulted in 43 contigs with a total assembly size of ∼54 Mb, and an N50 of 3.4 Mb. In total, 12,926 protein-coding genes and 7,036 repeats were predicted. Genome comparisons detected accumulation of DNA transposons in Macrophomina species associated with sorghum. The first reference genome of M. tecta generated in this study will contribute to more comparative and population genomics studies of Macrophomina species.


Assuntos
Ascomicetos , Sorghum , Ascomicetos/genética , Grão Comestível/genética , Genoma , Sorghum/genética
11.
Front Microbiol ; 13: 903024, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756050

RESUMO

Powdery mildew fungi (Erysiphaceae), common obligate biotrophic pathogens of many plants, including important agricultural and horticultural crops, represent a monophyletic lineage within the Ascomycota. Within the Erysiphaceae, molecular phylogenetic relationships and DNA-based species and genera delimitations were up to now mostly based on nuclear ribosomal DNA (nrDNA) phylogenies. This is the first comprehensive genome-scale phylogenetic analysis of this group using 751 single-copy orthologous sequences extracted from 24 selected powdery mildew genomes and 14 additional genomes from Helotiales, the fungal order that includes the Erysiphaceae. Representative genomes of all powdery mildew species with publicly available whole-genome sequencing (WGS) data that were of sufficient quality were included in the analyses. The 24 powdery mildew genomes included in the analysis represented 17 species belonging to eight out of 19 genera recognized within the Erysiphaceae. The epiphytic genera, all but one represented by multiple genomes, belonged each to distinct, well-supported lineages. Three hemiendophytic genera, each represented by a single genome, together formed the hemiendophytic lineage. Out of the 14 other taxa from the Helotiales, Arachnopeziza araneosa, a saprobic species, was the only taxon that grouped together with the 24 genome-sequenced powdery mildew fungi in a monophyletic clade. The close phylogenetic relationship between the Erysiphaceae and Arachnopeziza was revealed earlier by a phylogenomic study of the Leotiomycetes. Further analyses of powdery mildew and Arachnopeziza genomes may discover signatures of the evolutionary processes that have led to obligate biotrophy from a saprobic way of life. A separate phylogeny was produced using the 18S, 5.8S, and 28S nrDNA sequences of the same set of powdery mildew specimens and compared to the genome-scale phylogeny. The nrDNA phylogeny was largely congruent to the phylogeny produced using 751 orthologs. This part of the study has revealed multiple contamination and other quality issues in some powdery mildew genomes. We recommend that the presence of 28S, internal transcribed spacer (ITS), and 18S nrDNA sequences in powdery mildew WGS datasets that are identical to those determined by Sanger sequencing should be used to assess the quality of assemblies, in addition to the commonly used Benchmarking Universal Single-Copy Orthologs (BUSCO) values.

13.
Phytopathology ; 112(4): 961-967, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34524883

RESUMO

Powdery mildew fungi (Erysiphaceae) are widespread obligate biotrophic plant pathogens. Thus, applying genetic and omics approaches to study these fungi remains a major challenge, particularly for species with hemiendophytic mycelium. These belong to a distinct phylogenetic lineage within the family Erysiphaceae. To date, only a single draft genome assembly is available for this clade, obtained for Leveillula taurica. Here, we generated the first draft genome assemblies of Pleochaeta shiraiana and Phyllactinia moricola, two tree-parasitic powdery mildew species with hemiendophytic mycelium, representing two genera that have not yet been investigated with genomics tools. The Pleochaeta shiraiana assembly was 96,769,103 bp in length and consisted of 14,447 scaffolds, and the Phyllactinia moricola assembly was 180,382,532 bp in length on 45,569 scaffolds. Together with the draft genome of L. taurica, these resources will be pivotal for understanding the molecular basis of the lifestyle of these fungi, which is unique within the family Erysiphaceae.


Assuntos
Micélio , Doenças das Plantas , Ascomicetos , Filogenia , Doenças das Plantas/microbiologia
14.
Fungal Divers ; 111(1): 1-335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899100

RESUMO

This article is the 13th contribution in the Fungal Diversity Notes series, wherein 125 taxa from four phyla, ten classes, 31 orders, 69 families, 92 genera and three genera incertae sedis are treated, demonstrating worldwide and geographic distribution. Fungal taxa described and illustrated in the present study include three new genera, 69 new species, one new combination, one reference specimen and 51 new records on new hosts and new geographical distributions. Three new genera, Cylindrotorula (Torulaceae), Scolecoleotia (Leotiales genus incertae sedis) and Xenovaginatispora (Lindomycetaceae) are introduced based on distinct phylogenetic lineages and unique morphologies. Newly described species are Aspergillus lannaensis, Cercophora dulciaquae, Cladophialophora aquatica, Coprinellus punjabensis, Cortinarius alutarius, C. mammillatus, C. quercoflocculosus, Coryneum fagi, Cruentomycena uttarakhandina, Cryptocoryneum rosae, Cyathus uniperidiolus, Cylindrotorula indica, Diaporthe chamaeropicola, Didymella azollae, Diplodia alanphillipsii, Dothiora coronicola, Efibula rodriguezarmasiae, Erysiphe salicicola, Fusarium queenslandicum, Geastrum gorgonicum, G. hansagiense, Helicosporium sexualis, Helminthosporium chiangraiensis, Hongkongmyces kokensis, Hydrophilomyces hydraenae, Hygrocybe boertmannii, Hyphoderma australosetigerum, Hyphodontia yunnanensis, Khaleijomyces umikazeana, Laboulbenia divisa, Laboulbenia triarthronis, Laccaria populina, Lactarius pallidozonarius, Lepidosphaeria strobelii, Longipedicellata megafusiformis, Lophiotrema lincangensis, Marasmius benghalensis, M. jinfoshanensis, M. subtropicus, Mariannaea camelliae, Melanographium smilaxii, Microbotryum polycnemoides, Mimeomyces digitatus, Minutisphaera thailandensis, Mortierella solitaria, Mucor harpali, Nigrograna jinghongensis, Odontia huanrenensis, O. parvispina, Paraconiothyrium ajrekarii, Parafuscosporella niloticus, Phaeocytostroma yomensis, Phaeoisaria synnematicus, Phanerochaete hainanensis, Pleopunctum thailandicum, Pleurotheciella dimorphospora, Pseudochaetosphaeronema chiangraiense, Pseudodactylaria albicolonia, Rhexoacrodictys nigrospora, Russula paravioleipes, Scolecoleotia eriocamporesi, Seriascoma honghense, Synandromyces makranczyi, Thyridaria aureobrunnea, Torula lancangjiangensis, Tubeufia longihelicospora, Wicklowia fusiformispora, Xenovaginatispora phichaiensis and Xylaria apiospora. One new combination, Pseudobactrodesmium stilboideus is proposed. A reference specimen of Comoclathris permunda is designated. New host or distribution records are provided for Acrocalymma fici, Aliquandostipite khaoyaiensis, Camarosporidiella laburni, Canalisporium caribense, Chaetoscutula juniperi, Chlorophyllum demangei, C. globosum, C. hortense, Cladophialophora abundans, Dendryphion hydei, Diaporthe foeniculina, D. pseudophoenicicola, D. pyracanthae, Dictyosporium pandanicola, Dyfrolomyces distoseptatus, Ernakulamia tanakae, Eutypa flavovirens, E. lata, Favolus septatus, Fusarium atrovinosum, F. clavum, Helicosporium luteosporum, Hermatomyces nabanheensis, Hermatomyces sphaericoides, Longipedicellata aquatica, Lophiostoma caudata, L. clematidis-vitalbae, Lophiotrema hydei, L. neoarundinaria, Marasmiellus palmivorus, Megacapitula villosa, Micropsalliota globocystis, M. gracilis, Montagnula thailandica, Neohelicosporium irregulare, N. parisporum, Paradictyoarthrinium diffractum, Phaeoisaria aquatica, Poaceascoma taiwanense, Saproamanita manicata, Spegazzinia camelliae, Submersispora variabilis, Thyronectria caudata, T. mackenziei, Tubeufia chiangmaiensis, T. roseohelicospora, Vaginatispora nypae, Wicklowia submersa, Xanthagaricus necopinatus and Xylaria haemorrhoidalis. The data presented herein are based on morphological examination of fresh specimens, coupled with analysis of phylogenetic sequence data to better integrate taxa into appropriate taxonomic ranks and infer their evolutionary relationships.

15.
Genome Biol Evol ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34499119

RESUMO

The rapid and widespread evolution of fungicide resistance remains a challenge for crop disease management. The demethylation inhibitor (DMI) class of fungicides is a widely used chemistry for managing disease, but there has been a gradual decline in efficacy in many crop pathosystems. Reliance on DMI fungicides has increased resistance in populations of the plant pathogenic fungus Cercospora beticola worldwide. To better understand the genetic and evolutionary basis for DMI resistance in C. beticola, a genome-wide association study (GWAS) and selective sweep analysis were conducted for the first time in this species. We performed whole-genome resequencing of 190 C. beticola isolates infecting sugar beet (Beta vulgaris ssp. vulgaris). All isolates were phenotyped for sensitivity to the DMI tetraconazole. Intragenic markers on chromosomes 1, 4, and 9 were significantly associated with DMI fungicide resistance, including a polyketide synthase gene and the gene encoding the DMI target CbCYP51. Haplotype analysis of CbCYP51 identified a synonymous mutation (E170) and nonsynonymous mutations (L144F, I387M, and Y464S) associated with DMI resistance. Genome-wide scans of selection showed that several of the GWAS mutations for fungicide resistance resided in regions that have recently undergone a selective sweep. Using radial plate growth on selected media as a fitness proxy, we did not find a trade-off associated with DMI fungicide resistance. Taken together, we show that population genomic data from a crop pathogen can allow the identification of mutations conferring fungicide resistance and inform about their origins in the pathogen population.


Assuntos
Ascomicetos , Fungicidas Industriais , Ascomicetos/genética , Cercospora , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Estudo de Associação Genômica Ampla
16.
Genome Biol Evol ; 13(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34363471

RESUMO

Powdery mildews are among the most important plant pathogens worldwide, which are often attacked in the field by mycoparasitic fungi belonging to the genus Ampelomyces. The taxonomy of the genus Ampelomyces is unresolved, but well-supported molecular operational taxonomic units were repeatedly defined suggesting that the genus may include at least four to seven species. Some Ampelomyces strains were commercialized as biocontrol agents of crop pathogenic powdery mildews. However, the genomic mechanisms underlying their mycoparasitism are still poorly understood. To date, the draft genome of a single Ampelomyces strain, designated as HMLAC 05119, has been released. We report a high-quality, annotated hybrid draft genome assembly of A. quisqualis strain BRIP 72107, which, based on phylogenetic analyses, is not conspecific with HMLAC 05119. The constructed genome is 40.38 Mb in size, consisting of 24 scaffolds with an N50 of 2.99 Mb and 96.2% completeness. Our analyses revealed "bipartite" structure of Ampelomyces genomes, where GC-balanced genomic regions are interspersed by longer or shorter stretches of AT-rich regions. This is also a hallmark of many plant pathogenic fungi and provides further evidence for evolutionary affinity of Ampelomyces species to plant pathogenic fungi. The high-quality genome and annotation produced here provide an important resource for future genomic studies of mycoparasitisim to decipher molecular mechanisms underlying biocontrol processes and natural tritrophic interactions.


Assuntos
Ascomicetos , Doenças das Plantas , Ascomicetos/genética , Filogenia , Doenças das Plantas/microbiologia , Plantas/microbiologia
17.
Mol Plant Microbe Interact ; 34(10): 1216-1222, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34185567

RESUMO

Despite the substantial economic impact of Curtobacterium flaccumfaciens pv. flaccumfaciens on legume production worldwide, the genetic basis of its pathogenicity and potential host association is poorly understood. The production of high-quality reference genome assemblies of C. flaccumfaciens pv. flaccumfaciens strains associated with different hosts sheds light on the genetic basis of its pathogenic variability and host association. Moreover, the study of recent outbreaks of bacterial wilt and microevolution of the pathogen in Australia requires access to high-quality reference genomes that are sufficiently closely related to the population being studied within Australia. We provide the first genome assemblies of C. flaccumfaciens pv. flaccumfaciens strains associated with mungbean and soybean, which revealed high variability in their plasmid composition. The analysis of C. flaccumfaciens pv. flaccumfaciens genomes revealed an extensive suite of carbohydrate-active enzymes potentially associated with pathogenicity, including four carbohydrate esterases, 50 glycoside hydrolases, 23 glycosyl transferases, and a polysaccharide lyase. We also identified 11 serine peptidases, three of which were located within a linear plasmid, pCff119. These high-quality assemblies and annotations will provide a foundation for population genomics studies of C. flaccumfaciens pv. flaccumfaciens in Australia and for answering fundamental questions regarding pathogenicity factors and adaptation of C. flaccumfaciens pv. flaccumfaciens to various hosts worldwide and, at a broader scale, contribute to unraveling genomic features of gram-positive, xylem-inhabiting bacterial pathogens.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Fabaceae , Vigna , Actinobacteria , Doenças das Plantas , Plasmídeos/genética , Glycine max
18.
Phytopathology ; 111(12): 2278-2286, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34033506

RESUMO

Net blotch diseases result in significant yield losses to barley industries worldwide. They occur as net-form and spot-form net blotch caused by Pyrenophora teres f. teres and P. teres f. maculata, respectively. Hybridization between the forms was proposed to be rare, but recent identifications of field hybrids has renewed interest in the frequency and mechanisms underlying hybridization. This study investigates the mating preference of P. teres f. teres, P. teres f. maculata, and laboratory-produced hybrids in vitro, using 24 different isolates and four different experimental setups. Two crosses in our study produced ascospores during two intervals separated by a 32- to 35-day period of no ascospore production. For these crosses, P. teres f. teres isolates mated with isolates of the same form during the early ascospore production interval, and produced hybrids during the later interval. P. teres f. maculata isolates did not mate with isolates of the same form, but instead hybridized with P. teres f. teres isolates. Analyses based on DArTseq markers confirmed that laboratory-produced hybrids, when given the choice to mate with both P. teres f. teres and P. teres f. maculata, mated with P. teres f. teres isolates. These results unravel a novel concept that P. teres f. teres seems to have a greater reproduction vigor than P. teres f. maculata, which could lead to increased prevalence of hybrid incidences in vivo.


Assuntos
Ascomicetos , Hordeum , Ascomicetos/genética , Doenças das Plantas , Reprodução
19.
Phytopathology ; 111(11): 2118-2129, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33926197

RESUMO

Net form net blotch disease, caused by Pyrenophora teres f. teres, results in significant yield losses to barley industries. Up-to-date knowledge of the genetic diversity and structure of pathogen populations is critical for elucidating the disease epidemiology and unraveling pathogen survival and dispersal mechanisms. Thus, this study investigated long-distance dispersal and adaptation by analyzing the genetic structure of 250 P. teres f. teres isolates collected from Australia, Canada, Hungary, and Republic of South Africa (RSA), and historical isolates from Canada, Denmark, Japan, and Sweden. The population genetic structure detected by discriminant analysis of principal components, with the use of 5,890 Diversity Arrays Technology markers, revealed the presence of four clusters. Two of these contained isolates from all regions, and all isolates from RSA were grouped in these two. Australia and Hungary showed three clusters each. One of the Australian clusters contained only Australian isolates. One of the Hungarian clusters contained only Hungarian isolates and one Danish isolate. STRUCTURE analysis indicated that some isolates from Australia and Hungary shared recent ancestry with RSA, Canada, and historical isolates and were thus admixed. Subdivisions of the neighbor joining network indicated that isolates from distinct countries were closely related, suggesting that multiple introduction events conferred genetic heterogeneity in these countries. Through a neighbor joining analysis and amplification with form-specific DNA markers, we detected two hybrid isolates, CBS 281.31 from Japan and H-919 from Hungary, collected in 1931 and 2018, respectively. These results provide a foundation for exploring improved management of disease incursions and pathogen control through strategic deployment of resistance.


Assuntos
Ascomicetos , Hordeum , Ascomicetos/genética , Austrália , Doenças das Plantas
20.
Phytopathology ; 111(7): 1193-1206, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33487024

RESUMO

Powdery mildew is a significant threat to mungbean (Vigna radiata) and black gram (V. mungo) production across Australia and overseas. Although they have been present in Australia for at least six decades and are easily recognized in the field, the precise identification of the pathogens causing this disease has remained unclear. Our goal was to identify the powdery mildew species infecting mungbean, black gram, and wild mungbean (V. radiata ssp. sublobata) in Australia. The internal transcribed spacer (ITS) and large subunit sequences of the ribosomal DNA and/or morphology of 57 Australian specimens were examined. Mungbean and black gram were infected by two species: Podosphaera xanthii and a newly recognized taxon, Erysiphe vignae sp. nov. Wild mungbean was infected only with P. xanthii. Mungbean and black gram powdery mildew ITS sequences from China, India, and Taiwan revealed the presence of only P. xanthii on these crops despite controversial reports of an Erysiphe species on both crops in India. Sequence analyses indicated that the closest relative of E. vignae is E. diffusa, which infects soybean (Glycine max) and other plants. E. vignae did not infect soybean in cross-inoculation tests. In turn, E. diffusa from soybean infected black gram and provoked hypersensitive response in mungbean. The recognition of a second species, E. vignae, as another causal agent of mungbean and black gram powdery mildew in Australia may complicate plant breeding efforts and control of the disease with fungicide applications.


Assuntos
Ascomicetos/patogenicidade , Erysiphe/patogenicidade , Doenças das Plantas/microbiologia , Vigna , Austrália , Melhoramento Vegetal , Vigna/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA