Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0299294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451983

RESUMO

Dendritic cell (DC) activation is marked by key events including: (I) rapid induction and shifting of metabolism favoring glycolysis for generation of biosynthetic metabolic intermediates and (II) large scale changes in gene expression including the upregulation of the antimicrobial enzyme inducible nitric oxide synthase (iNOS) which produces the toxic gas nitric oxide (NO). Historically, acute metabolic reprogramming and NO-mediated effects on cellular metabolism have been studied at specific timepoints during the DC activation process, namely at times before and after NO production. However, no formal method of real time detection of NO-mediated effects on DC metabolism have been fully described. Here, using Real-Time Extracellular Flux Analysis, we experimentally establish the phenomenon of an NO-dependent mitochondrial respiration threshold, which shows how titration of an activating stimulus is inextricably linked to suppression of mitochondrial respiration in an NO-dependent manner. As part of this work, we explore the efficacy of two different iNOS inhibitors in blocking the iNOS reaction kinetically in real time and explore/discuss parameters and considerations for application using Real Time Extracellular Flux Analysis technology. In addition, we show, the temporal relationship between acute metabolic reprogramming and NO-mediated sustained metabolic reprogramming kinetically in single real-time assay. These findings provide a method for detection of NO-mediated metabolic effects in DCs and offer novel insight into the timing of the DC activation process with its associated key metabolic events, revealing a better understanding of the nuances of immune cell biology.


Assuntos
Óxido Nítrico , Respiração , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Regulação para Cima
2.
J Immunol ; 208(1): 97-109, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34872978

RESUMO

Dendritic cell (DC) activation is characterized by sustained commitment to glycolysis that is a requirement for survival in DC subsets that express inducible NO synthase (Nos2) due to NO-mediated inhibition of mitochondrial respiration. This phenomenon primarily has been studied in DCs from the classic laboratory inbred mouse strain C57BL/6J (B6) mice, where DCs experience a loss of mitochondrial function due to NO accumulation. To assess the conservation of NO-driven metabolic regulation in DCs, we compared B6 mice to the wild-derived genetically divergent PWD/PhJ (PWD) strain. We show preserved mitochondrial respiration and enhanced postactivation survival due to attenuated NO production in LPS-stimulated PWD DCs phenocopying human monocyte-derived DCs. To genetically map this phenotype, we used a congenic mouse strain (B6.PWD-Chr11.2) that carries a PWD-derived portion of chromosome 11, including Nos2, on a B6 background. B6.PWD-Chr11.2 DCs show preserved mitochondrial function and produce lower NO levels than B6 DCs. We demonstrate that activated B6.PWD-Chr11.2 DCs maintain mitochondrial respiration and TCA cycle carbon flux, compared with B6 DCs. However, reduced NO production by the PWD Nos2 allele results in impaired cellular control of Listeria monocytogenes replication. These studies establish a natural genetic model for restrained endogenous NO production to investigate the contribution of NO in regulating the interplay between DC metabolism and immune function. These findings suggest that reported differences between human and murine DCs may be an artifact of the limited genetic diversity of the mouse models used, underscoring the need for mouse genetic diversity in immunology research.


Assuntos
Células Dendríticas/imunologia , Listeria monocytogenes/fisiologia , Listeriose/imunologia , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Alelos , Animais , Animais Selvagens , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Resistência à Doença , Patrimônio Genético , Humanos , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo
3.
Cell Death Dis ; 9(9): 907, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185782

RESUMO

Despite the recent advancement in treating melanoma, options are still limited for patients without BRAF mutations or in relapse from current treatments. BH3 mimetics against members of the BCL-2 family have gained excitement with the recent success in hematological malignancies. However, single drug BH3 mimetic therapy in melanoma has limited effectiveness due to escape by the anti-apoptotic protein MCL-1 and/or survival of melanoma-initiating cells (MICs). We tested the efficacy of the BH3 mimetic combination of A-1210477 (an MCL-1 inhibitor) and ABT-263 (a BCL-2/BCL-XL/BCL-W inhibitor) in killing melanoma, especially MICs. We also sought to better define Dynamin-Related Protein 1 (DRP-1)'s role in melanoma; DRP-1 is known to interact with members of the BCL-2 family and is a possible therapeutic target for melanoma treatment. We used multiple assays (cell viability, apoptosis, bright field, immunoblot, and sphere formation), as well as the CRISPR/Cas9 genome-editing techniques. For clinical relevance, we employed patient samples of different mutation status, including some relapsed from current treatments such as anti-PD-1 immunotherapy. We found the BH3 mimetic combination kill both the MICs and non-MICs (bulk of melanoma) in all cell lines and patient samples irrespective of the mutation status or relapsed state (p < 0.05). Unexpectedly, the major pro-apoptotic proteins, NOXA and BIM, are not necessary for the combination-induced cell death. Furthermore, the combination impedes the activation of DRP-1, and inhibition of DRP-1 further enhances apoptosis (p < 0.05). DRP-1 effects in melanoma differ from those seen in other cancer cells. These results provide new insights into BCL-2 family's regulation of the apoptotic pathway in melanoma, and suggest that inhibiting the major anti-apoptotic proteins is sufficient to induce cell death even without involvement from major pro-apoptotic proteins. Importantly, our study also indicates that DRP-1 inhibition is a promising adjuvant for BH3 mimetics in melanoma treatment.


Assuntos
Apoptose/fisiologia , GTP Fosfo-Hidrolases/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Dinaminas , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA