Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Anal Chim Acta ; 1276: 341640, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37573118

RESUMO

Ultrathin surface-tethered polymer brushes represent attractive platforms for a wide range of sensing applications in strategically vital areas such as medicine, forensics, or security. The recent trends in such developments towards "real world conditions" highlighted the role of zwitterionic poly(carboxybetaine) (pCB) brushes which provide excellent antifouling properties combined with bio-functionalization capacity. Highly dense pCB brushes are usually prepared by the "grafting from" polymerization triggered by initiators on self-assembled monolayers (SAMs). Here, multi-methodological experimental studies are pursued to elucidate the impact of the alkanethiolate SAM chain length (C6, C8 and C11) on structural and functional properties of antifouling poly(carboxybetaine methacrylamide) (pCBMAA) brush. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in a custom-made 3D printed cell employing [Ru(NH3)6]3+/2+ redox probe were used to investigate penetrability of SAM/pCBMAA bilayers for small molecules and interfacial charge transfer characteristics. The biofouling resistance of pCBMAA brushes was characterized by surface plasmon resonance; ellipsometry and FT-IRRAS spectroscopy were used to determine swelling and relative density of the brushes synthesized from initiator-bearing SAMs with varied carbon chain length. The SAM length was found to have a substantial impact on all studied characteristics; the highest value of charge transfer resistance (Rct) was observed for denser pCBMAA on longer-chain (C11) SAM when compared to shorter (C8/C6) SAMs. The observed high value of Rct for C11 implies a limitation for the analytical performance of electrochemical sensing methods. At the same time, the pCBMAA brushes on C11 SAM exhibited the best bio-fouling resistance among inspected systems. This demonstrates that proper selection of supporting structures for brushes is critical in the design of these assemblies for biosensing applications.

2.
J Travel Med ; 30(5)2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37133444

RESUMO

BACKGROUND: Exposure to pathogens in public transport systems is a common means of spreading infection, mainly by inhaling aerosol or droplets from infected individuals. Such particles also contaminate surfaces, creating a potential surface-transmission pathway. METHODS: A fast acoustic biosensor with an antifouling nano-coating was introduced to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on exposed surfaces in the Prague Public Transport System. Samples were measured directly without pre-treatment. Results with the sensor gave excellent agreement with parallel quantitative reverse-transcription polymerase chain reaction (qRT-PCR) measurements on 482 surface samples taken from actively used trams, buses, metro trains and platforms between 7 and 9 April 2021, in the middle of the lineage Alpha SARS-CoV-2 epidemic wave when 1 in 240 people were COVID-19 positive in Prague. RESULTS: Only ten of the 482 surface swabs produced positive results and none of them contained virus particles capable of replication, indicating that positive samples contained inactive virus particles and/or fragments. Measurements of the rate of decay of SARS-CoV-2 on frequently touched surface materials showed that the virus did not remain viable longer than 1-4 h. The rate of inactivation was the fastest on rubber handrails in metro escalators and the slowest on hard-plastic seats, window glasses and stainless-steel grab rails. As a result of this study, Prague Public Transport Systems revised their cleaning protocols and the lengths of parking times during the pandemic. CONCLUSIONS: Our findings suggest that surface transmission played no or negligible role in spreading SARS-CoV-2 in Prague. The results also demonstrate the potential of the new biosensor to serve as a complementary screening tool in epidemic monitoring and prognosis.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Aerossóis e Gotículas Respiratórios , Meios de Transporte , Pandemias/prevenção & controle
3.
Analyst ; 147(12): 2597-2614, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35621143

RESUMO

Recent progress in biointerface research has highlighted the role of antifouling functionalizable coatings in the development of advanced biosensors for point-of-care bioanalytical and biomedical applications dealing with real-world complex samples. The resistance to nonspecific adsorption promotes the biorecognition performance and overall increases the reliability and specificity of the analysis. However, the process of modification with biorecognition elements (so-called functionalization) may influence the resulting antifouling properties. The extent of these effects concerning both functionalization procedures potentially changing the surface architecture and properties, and the physicochemical properties of anchored biorecognition elements, remains unclear and has not been summarized in the literature yet. This critical review summarizes these key functionalization aspects with respect to diverse antifouling architectures showing low or ultra-low fouling quantitative characteristics in complex biological media such as bodily fluids or raw food samples. The subsequent discussion focuses on the impact of functionalization on fouling resistance. Furthermore, this review discusses some of the drawbacks of available surface sensitive characterization methods and highlights the importance of suitable assessment of the resistance to fouling.


Assuntos
Incrustação Biológica , Técnicas Biossensoriais , Adsorção , Incrustação Biológica/prevenção & controle , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Propriedades de Superfície
4.
ACS Appl Mater Interfaces ; 13(50): 60612-60624, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34902239

RESUMO

New analytical techniques that overcome major drawbacks of current routinely used viral infection diagnosis methods, i.e., the long analysis time and laboriousness of real-time reverse-transcription polymerase chain reaction (qRT-PCR) and the insufficient sensitivity of "antigen tests", are urgently needed in the context of SARS-CoV-2 and other highly contagious viruses. Here, we report on an antifouling terpolymer-brush biointerface that enables the rapid and sensitive detection of SARS-CoV-2 in untreated clinical samples. The developed biointerface carries a tailored composition of zwitterionic and non-ionic moieties and allows for the significant improvement of antifouling capabilities when postmodified with biorecognition elements and exposed to complex media. When deployed on a surface of piezoelectric sensor and postmodified with human-cell-expressed antibodies specific to the nucleocapsid (N) protein of SARS-CoV-2, it made possible the quantitative analysis of untreated samples by a direct detection assay format without the need of additional amplification steps. Natively occurring N-protein-vRNA complexes, usually disrupted during the sample pre-treatment steps, were detected in the untreated clinical samples. This biosensor design improved the bioassay sensitivity to a clinically relevant limit of detection of 1.3 × 104 PFU/mL within a detection time of only 20 min. The high specificity toward N-protein-vRNA complexes was validated both by mass spectrometry and qRT-PCR. The performance characteristics were confirmed by qRT-PCR through a comparative study using a set of clinical nasopharyngeal swab samples. We further demonstrate the extraordinary fouling resistance of this biointerface through exposure to other commonly used crude biological samples (including blood plasma, oropharyngeal, stool, and nasopharyngeal swabs), measured via both the surface plasmon resonance and piezoelectric measurements, which highlights the potential to serve as a generic platform for a wide range of biosensing applications.


Assuntos
Teste para COVID-19 , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/química , Mucosa Nasal/virologia , Polímeros/química , RNA Viral/metabolismo , SARS-CoV-2 , Incrustação Biológica , Bioensaio , Técnicas Biossensoriais , Humanos , Íons , Limite de Detecção , Espectrometria de Massas , Nasofaringe/virologia , Fosfoproteínas/química , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Manejo de Espécimes
5.
Biomater Sci ; 9(22): 7379-7391, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34693954

RESUMO

Polymer brushes are frequently used as surface-tethered antifouling layers in biosensors to improve sensor surface-analyte recognition in the presence of abundant non-target molecules in complex biological samples by suppressing nonspecific interactions. However, because brushes are complex systems highly responsive to changes in their surrounding environment, studying their properties remains a challenge. Electrochemical impedance spectroscopy (EIS) is an emerging method in this context. In this mini review, we aim to elucidate the potential of EIS for investigating the physicochemical properties and structural aspects of polymer brushes. The application of EIS in brush-based biosensors is also discussed. Most common principles employed in these biosensors are presented, as well as interpretation of EIS data obtained in such setups. Overall, we demonstrate that the EIS-polymer brush pairing has a considerable potential for providing new insights into brush functionalities and designing highly sensitive and specific biosensors.


Assuntos
Técnicas Biossensoriais , Espectroscopia Dielétrica , Polímeros
6.
Nanoscale ; 13(31): 13538-13549, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34477758

RESUMO

The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents with enzymatic activity (enzybiotics) and phage therapy represent promising and effective alternatives to classic antibiotics. However, new tools are needed to study phage-bacteria interactions and bacterial lysis with high resolution and in real-time. Here, we introduce a method for studying the lysis of S. aureus at the single-cell level in real-time using atomic force microscopy (AFM) in liquid. We demonstrate the ability of the method to monitor the effect of the enzyme lysostaphin on S. aureus and the lytic action of the Podoviridae phage P68. AFM allowed the topographic and biomechanical properties of individual bacterial cells to be monitored at high resolution over the course of their lysis, under near-physiological conditions. Changes in the stiffness of S. aureus cells during lysis were studied by analyzing force-distance curves to determine Young's modulus. This allowed observing a progressive decline in cellular stiffness corresponding to the disintegration of the cell envelope. The AFM experiments were complemented by surface plasmon resonance (SPR) experiments that provided information on the kinetics of phage-bacterium binding and the subsequent lytic processes. This approach forms the foundation of an innovative framework for studying the lysis of individual bacteria that may facilitate the further development of phage therapy.


Assuntos
Bacteriófagos , Infecções Estafilocócicas , Animais , Humanos , Microscopia de Força Atômica , Staphylococcus aureus , Ressonância de Plasmônio de Superfície
7.
Biomolecules ; 10(8)2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764330

RESUMO

Cells are continuously sensing their microenvironment and subsequently respond to different physicochemical cues by the activation or inhibition of different signaling pathways. To study a very complex cellular response, it is necessary to diminish background environmental influences and highlight the particular event. However, surface-driven nonspecific interactions of the abundant biomolecules from the environment influence the targeted cell response significantly. Yes-associated protein (YAP) translocation may serve as a marker of human hepatocellular carcinoma (Huh7) cell responses to the extracellular matrix and surface-mediated stresses. Here, we propose a platform of tunable functionable antifouling poly(carboxybetain) (pCB)-based brushes to achieve a molecularly clean background for studying arginine, glycine, and aspartic acid (RGD)-induced YAP-connected mechanotransduction. Using two different sets of RGD-functionalized zwitterionic antifouling coatings with varying compositions of the antifouling layer, a clear correlation of YAP distribution with RGD functionalization concentrations was observed. On the other hand, commonly used surface passivation by the oligo(ethylene glycol)-based self-assembled monolayer (SAM) shows no potential to induce dependency of the YAP distribution on RGD concentrations. The results indicate that the antifouling background is a crucial component of surface-based cellular response studies, and pCB-based zwitterionic antifouling brush architectures may serve as a potential next-generation easily functionable surface platform for the monitoring and quantification of cellular processes.


Assuntos
Incrustação Biológica/prevenção & controle , Materiais Revestidos Biocompatíveis/química , Mecanotransdução Celular , Acrilamidas/química , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Humanos , Oligopeptídeos/química , Proteínas Proto-Oncogênicas c-yes/metabolismo , Estresse Mecânico
8.
Langmuir ; 36(29): 8485-8493, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32506911

RESUMO

Polymer brushes not only represent emerging surface platforms for numerous bioanalytical and biological applications but also create advanced surface-tethered systems to mimic real-life biological processes. In particular, zwitterionic and nonionic polymer brushes have been intensively studied because of their extraordinary resistance to nonspecific adsorption of biomolecules (antifouling characteristics) as well as the ability to be functionalized with bioactive molecules. However, the relation between antifouling behavior in real-world biological media and structural changes of polymer brushes induced by surface preconditioning in different environments remains unexplored. In this work, we use multiple methods to study the structural properties of numerous brushes under variable ionic concentrations and determine the impact of these changes on resistance to fouling from undiluted blood plasma. We describe different mechanisms of swelling, depending on both the polymer brush coating properties and the environmental conditions that affect changes in both hydration levels and thickness. Using both fluorescent and surface plasmon resonance methods, we found that the antifouling behavior of these brushes is strongly dependent on the aforementioned structural changes. Moreover, preconditioning of the brush coatings (incubation at a variable salt concentration or drying) prior to biomolecule interaction may significantly improve the antifouling performance. These results suggest a new simple approach to improve the antifouling behavior of polymer brushes. In addition, the results herein enhance the understanding for improved design of antifouling and bioresponsive brushes employed in biosensor and biomimetic applications.

9.
Macromol Biosci ; 20(3): e1900351, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32045093

RESUMO

Ultra-low fouling and functionalizable coatings represent emerging surface platforms for various analytical and biomedical applications such as those involving examination of cellular interactions in their native environments. Ultra-low fouling surface platforms as advanced interfaces enabling modulation of behavior of living cells via tuning surface physicochemical properties are presented and studied. The state-of-art ultra-low fouling surface-grafted polymer brushes of zwitterionic poly(carboxybetaine acrylamide), nonionic poly(N-(2-hydroxypropyl)methacrylamide), and random copolymers of carboxybetaine methacrylamide (CBMAA) and HPMAA [p(CBMAA-co-HPMAA)] with tunable molar contents of CBMAA and HPMAA are employed. Using a model Huh7 cell line, a systematic study of surface wettability, swelling, and charge effects on the cell growth, shape, and cytoskeleton distribution is performed. This study reveals that ultra-low fouling interfaces with a high content of zwitterionic moieties (>65 mol%) modulate cell behavior in a distinctly different way compared to coatings with a high content of nonionic HPMAA. These differences are attributed mostly to the surface hydration capabilities. The results demonstrate a high potential of carboxybetaine-rich ultra-low fouling surfaces with high hydration capabilities and minimum background signal interferences to create next-generation bioresponsive interfaces for advanced studies of living objects.


Assuntos
Materiais Revestidos Biocompatíveis , Citoesqueleto/metabolismo , Teste de Materiais , Polímeros , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Polímeros/química , Polímeros/farmacologia , Molhabilidade
10.
Anal Chem ; 88(21): 10533-10539, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27689386

RESUMO

Functional polymer coatings that combine the ability to resist nonspecific fouling from complex media with high biorecognition element (BRE) immobilization capacity represent an emerging class of new functional materials for a number of bioanalytical and biosensor technologies for medical diagnostics, security, and food safety. Here, we report on a random copolymer brush surface - poly(CBMAA-ran-HPMAA) - providing high BRE immobilization capacity while simultaneously exhibiting ultralow-fouling behavior in complex food media. We demonstrate that both the functionalization and fouling resistance capabilities of such copolymer brushes can be tuned by changing the surface contents of the two monomer units: nonionic N-(2-hydroxypropyl) methacrylamide (HPMAA) and carboxy-functional zwitterionic carboxybetaine methacrylamide (CBMAA). It is demonstrated that the resistance to fouling decreases with the surface content of CBMAA; poly(CBMAA-ran-HPMAA) brushes with CBMAA molar content up to 15 mol % maintain excellent resistance to fouling from a variety of homogenized foods (hamburger, cucumber, milk, and lettuce) even after covalent attachment of BREs to carboxy groups of CBMAA. The poly(CBMAA 15 mol %-ran-HPMAA) brushes functionalized with antibodies are demonstrated to exhibit fouling resistance from food samples by up to 3 orders of magnitude better when compared with the widely used low-fouling carboxy-functional oligo(ethylene glycol) (OEG)-based alkanethiolate self-assembled monolayers (AT SAMs) and, furthermore, by up to 2 orders of magnitude better when compared with the most successful ultralow-fouling biorecognition coatings - poly(carboxybetaine acrylamide), poly(CBAA). When model SPR detections of food-borne bacterial pathogens in homogenized foods are used, it is also demonstrated that the antibody-functionalized poly(CBMAA 15 mol %-ran-HPMAA) brush exhibits superior biorecognition properties over the poly(CBAA).


Assuntos
Acrilamidas/química , Resinas Acrílicas/química , Incrustação Biológica/prevenção & controle , Inocuidade dos Alimentos/métodos , Resinas Acrílicas/síntese química , Anticorpos/química , Escherichia coli/imunologia , Alimentos , Ouro/química , Nanopartículas/química , Salmonella typhimurium/imunologia , Molhabilidade
11.
Biosens Bioelectron ; 80: 84-90, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26807521

RESUMO

Recent outbreaks of foodborne illnesses have shown that foodborne bacterial pathogens present a significant threat to public health, resulting in an increased need for technologies capable of fast and reliable screening of food commodities. The optimal method of pathogen detection in foods should: (i) be rapid, specific, and sensitive; (ii) require minimum sample preparation; and (iii) be robust and cost-effective, thus enabling use in the field. Here we report the use of a SPR biosensor based on ultra-low fouling and functionalizable poly(carboxybetaine acrylamide) (pCBAA) brushes for the rapid and sensitive detection of bacterial pathogens in crude food samples utilizing a three-step detection assay. We studied both the surface resistance to fouling and the functional capabilities of these brushes with respect to each step of the assay, namely: (I) incubation of the sensor with crude food samples, resulting in the capture of bacteria by antibodies immobilized to the pCBAA coating, (II) binding of secondary biotinylated antibody (Ab2) to previously captured bacteria, and (III) binding of streptavidin-coated gold nanoparticles to the biotinylated Ab2 in order to enhance the sensor response. We also investigated the effects of the brush thickness on the biorecognition capabilities of the gold-grafted functionalized pCBAA coatings. We demonstrate that pCBAA-compared to standard low-fouling OEG-based alkanethiolate self-assemabled monolayers-exhibits superior surface resistance regarding both fouling from complex food samples as well as the non-specific binding of S-AuNPs. We further demonstrate that a SPR biosensor based on a pCBAA brush with a thickness as low as 20 nm was capable of detecting E. coli O157:H7 and Salmonella sp. in complex hamburger and cucumber samples with extraordinary sensitivity and specificity. The limits of detection for the two bacteria in cucumber and hamburger extracts were determined to be 57 CFU/mL and 17 CFU/mL for E. coli and 7.4 × 10(3) CFU/mL and 11.7 × 10(3)CFU/mL for Salmonella sp., respectively. In addition, we demonstrate the simultaneous detection of E. coli and Salmonella sp. in hamburger sample using a multichannel SPR biosensor having appropriate functional coatings.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157/isolamento & purificação , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Anticorpos Imobilizados/química , Escherichia coli O157/patogenicidade , Contaminação de Alimentos , Doenças Transmitidas por Alimentos/diagnóstico , Ouro/química , Humanos , Limite de Detecção , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA