Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Viruses ; 15(2)2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36851586

RESUMO

Noroviruses infect a wide range of mammals and are the major cause of gastroenteritis in humans. Recombination at the junction of ORF1 encoding nonstructural proteins and ORF2 encoding major capsid protein VP1 is a well-known feature of noroviruses. Using all available complete norovirus sequences, we systematically analyzed patterns of natural recombination in the genus Norovirus both throughout the genome and across the genogroups. Recombination events between nonstructural (ORF1) and structural genomic regions (ORF2 and ORF3) were found in all analyzed genogroups of noroviruses, although recombination was most prominent between members of GII, the most common genogroup that infects humans. The half-life times of recombinant forms (clades without evidence of recombination) of human GI and GII noroviruses were 10.4 and 8.4-11.3 years, respectively. There was evidence of many recent recombination events, and most noroviruses that differed by more than 18% of nucleotide sequence were recombinant relative to each other. However, there were no distinct recombination events between viruses that differed by over 42% in ORF2/3, consistent with the absence of systematic recombination between different genogroups. The few inter-genogroup recombination events most likely occurred between ancient viruses before they diverged into contemporary genogroups. The recombination events within ORF1 or between ORF2/3 were generally rare. Thus, noroviruses routinely exchange full structural and nonstructural blocks of the genome, providing a modular evolution.


Assuntos
Gastroenterite , Norovirus , Humanos , Animais , Norovirus/genética , Genótipo , Proteínas do Capsídeo/genética , Recombinação Genética , Mamíferos
2.
Microorganisms ; 10(1)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35056561

RESUMO

Surveillance for acute flaccid paralysis syndrome (AFP) in children under 15 is the backbone of the Global Polio Eradication Initiative. Laboratory examination of stool samples from AFP cases allows the detection of, along with polioviruses, a variety of non-polio enteroviruses (NPEV). The etiological significance of these viruses in the occurrence of AFP cases has been definitively established only for enteroviruses A71 and D68. Enterovirus Coxsackie A2 (CVA2) is most often associated with vesicular pharyngitis and hand, foot and mouth disease. Among 7280 AFP cases registered in Russia over 20 years (2001-2020), CVA2 was isolated only from five cases. However, these included three children aged 3 to 4 years, without overt immune deficiency, immunized with 4-5 doses of poliovirus vaccine in accordance with the National Vaccination Schedule. The disease resulted in persistent residual paralysis. Clinical and laboratory data corresponded to poliomyelitis developing during poliovirus infection. These findings are compatible with CVA2 being the cause of AFP. Molecular analysis of CVA2 from these patients and a number of AFP cases in other countries did not reveal association with a specific phylogenetic group, suggesting that virus genetics is unlikely to explain the pathogenic profile. The overall results highlight the value of AFP surveillance not just for polio control but for studies of uncommon AFP agents.

3.
Viruses ; 14(1)2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-35062270

RESUMO

Rabies is a globally prevalent viral zoonosis that causes 59,000 deaths per year and has important economic consequences. Most virus spread is associated with the migration of its primary hosts. Anthropogenic dissemination, mainly via the transportation of rabid dogs, shaped virus ecology a few hundred years ago and is responsible for several current outbreaks. A systematic analysis of aberrant long-distance events in the steppe and Arctic-like groups of rabies virus was performed using statistical (Bayesian) phylogeography and plots of genetic vs. geographic distances. The two approaches produced similar results but had some significant differences and complemented each other. No phylogeographic analysis could be performed for the Arctic group because polar foxes transfer the virus across the whole circumpolar region at high velocity, and there was no correlation between genetic and geographic distances in this virus group. In the Arctic-like group and the steppe subgroup of the cosmopolitan group, a significant number of known sequences (15-20%) was associated with rapid long-distance transfers, which mainly occurred within Eurasia. Some of these events have been described previously, while others have not been documented. Most of the recent long-distance transfers apparently did not result in establishing the introduced virus, but a few had important implications for the phylogeographic history of rabies. Thus, human-mediated long-distance transmission of the rabies virus remains a significant threat that needs to be addressed.


Assuntos
Efeitos Antropogênicos , Vírus da Raiva/classificação , Vírus da Raiva/genética , Raiva/veterinária , Raiva/virologia , Animais , Regiões Árticas , Teorema de Bayes , Cães , Raposas/virologia , Humanos , Filogenia , Filogeografia
4.
Viruses ; 12(11)2020 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142676

RESUMO

Currently, the lowest formal taxon in virus classification is species; however, unofficial lower-level units are commonly used in everyday work. Tick-borne encephalitis virus (TBEV) is a species of mammalian tick-borne flaviviruses that may cause encephalitis. Many known representatives of TBEV are grouped into subtypes, mostly according to their phylogenetic relationship. However, the emergence of novel sequences could dissolve this phylogenetic grouping; in the absence of strict quantitative criterion, it may be hard to define the borders of the first TBEV taxonomic unit below the species level. In this study, the nucleotide/amino-acid space of all known TBEV sequences was analyzed. Amino-acid sequence p-distances could not reliably distinguish TBEV subtypes. Viruses that differed by less than 10% of nucleotides in the polyprotein-coding gene belonged to the same subtype. At the same time, more divergent viruses were representatives of different subtypes. According to this distance criterion, TBEV species may be divided into seven subtypes: TBEV-Eur, TBEV-Sib, TBEV-FE, TBEV-2871 (TBEV-Ob), TBEV-Him, TBEV-178-79 (TBEV-Bkl-1), and TBEV-886-84 (TBEV-Bkl-2).


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/classificação , Vírus da Encefalite Transmitidos por Carrapatos/genética , Variação Genética , Filogenia , Proteínas do Envelope Viral/genética
5.
Microorganisms ; 8(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076346

RESUMO

Tick-Borne Encephalitis Virus (TBEV) is a dangerous arbovirus widely distributed in Northern Eurasia. The area of this pathogen changes over time. At the beginning of the 2000s, the Ixodes tick populations in Karelia increased. At the same time, the area of I. persulcatus, the main vector of the Siberian TBEV subtype, also expanded. Herein, we sequenced 10 viruses isolated from ticks collected in three locations from the Karelia region in 2008-2018. PCR positive samples were passaged in suckling mice or pig embryo kidney cells (PEK). After the second passage in suckling, mice viral RNA was isolated and E-gene fragment was sequenced. Viral sequences were expected to be similar or nearly identical. Instead, there was up to a 4.8% difference in nucleotide sequence, comparable with the most diverse viruses belonging to the Baltic subgroup in Siberian TBEV subtype (Baltic TBEV-Sib). To reveal whether this was systemic or incidental, a comprehensive phylogeographical analysis was conducted. Interestingly, viruses within each geographic region demonstrated comparable diversity to the whole Baltic TBEV-Sib. Moreover, Baltic TBEV-Sib has a distribution area limited by three ecological regions. This means that active virus mixing occurs in the vast geographic area forming one common virus pool. The most plausible explanation is the involvement of flying animals in the TBEV spread.

6.
Viruses ; 12(2)2020 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-32102228

RESUMO

Tick-borne encephalitis (TBE) is one of the most important viral zoonosis transmitted by the bite of infected ticks. In this study, all tick-borne encephalitis virus (TBEV) E gene sequences available in GenBank as of June 2019 with known date of isolation (n = 551) were analyzed. Simulation studies showed that a sample bias could significantly affect earlier studies, because small TBEV datasets (n = 50) produced non-overlapping intervals for evolutionary rate estimates. An apparent lack of a temporal signal in TBEV, in general, was found, precluding molecular clock analysis of all TBEV subtypes in one dataset. Within all subtypes and most of the smaller groups in these subtypes, there was evidence of many medium- and long-distance virus transfers. These multiple random events may play a key role in the virus spreading. For some groups, virus diversity within one territory was similar to diversity over the whole geographic range. This is best exemplified by the virus diversity observed in Switzerland or Czech Republic. These two countries yielded most of the known European subtype Eu3 subgroup sequences, and the diversity of viruses found within each of these small countries is comparable to that of the whole Eu3 subgroup, which is prevalent all over Central and Eastern Europe. Most of the deep tree nodes within all three established TBEV subtypes dated less than 300 years back. This could be explained by the recent emergence of most of the known TBEV diversity. Results of bioinformatics analysis presented here, together with multiple field findings, suggest that TBEV may be regarded as an emerging disease.


Assuntos
Doenças Transmissíveis Emergentes/virologia , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/transmissão , Ixodes/virologia , Proteínas do Envelope Viral/genética , Zoonoses/virologia , Animais , Teorema de Bayes , Doenças Transmissíveis Emergentes/transmissão , Biologia Computacional , Vírus da Encefalite Transmitidos por Carrapatos/classificação , Variação Genética , Genoma Viral , Humanos , Filogenia
7.
Biomedicines ; 8(1)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936504

RESUMO

Rheumatoid arthritis (RA) is a systemic inflammatory joint disease affecting about 1% of the population worldwide. Current treatment approaches do not ensure a cure for every patient. Moreover, classical regimens are based on nontargeted systemic immune suppression and have significant side effects. Biological treatment has advanced considerably but efficacy and specificity issues remain. Gene therapy is one of the potential future directions for RA therapy, which is rapidly developing. Several gene therapy trials done so far have been of moderate success, but experimental and genetics studies have yielded novel targets. As a result, the arsenal of gene therapy tools keeps growing. Currently, both viral and nonviral delivery systems are used for RA therapy. Herein, we review recent approaches for RA gene therapy.

8.
Proc Natl Acad Sci U S A ; 116(34): 17007-17012, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31371507

RESUMO

Shrews, insectivorous small mammals, pertain to an ancient mammalian order. We screened 693 European and African shrews for hepatitis B virus (HBV) homologs to elucidate the enigmatic genealogy of HBV. Shrews host HBVs at low prevalence (2.5%) across a broad geographic and host range. The phylogenetically divergent shrew HBVs comprise separate species termed crowned shrew HBV (CSHBV) and musk shrew HBV (MSHBV), each containing distinct genotypes. Recombination events across host orders, evolutionary reconstructions, and antigenic divergence of shrew HBVs corroborated ancient origins of mammalian HBVs dating back about 80 million years. Resurrected CSHBV replicated in human hepatoma cells, but human- and tupaia-derived primary hepatocytes were resistant to hepatitis D viruses pseudotyped with CSHBV surface proteins. Functional characterization of the shrew sodium taurocholate cotransporting polypeptide (Ntcp), CSHBV/MSHBV surface peptide binding patterns, and infection experiments revealed lack of Ntcp-mediated entry of shrew HBV. Contrastingly, HBV entry was enabled by the shrew Ntcp. Shrew HBVs universally showed mutations in their genomic preCore domains impeding hepatitis B e antigen (HBeAg) production and resembling those observed in HBeAg-negative human HBV. Deep sequencing and in situ hybridization suggest that HBeAg-negative shrew HBVs cause intense hepatotropic monoinfections and low within-host genomic heterogeneity. Geographical clustering and low MSHBV/CSHBV-specific seroprevalence suggest focal transmission and high virulence of shrew HBVs. HBeAg negativity is thus an ancient HBV infection pattern, whereas Ntcp usage for entry is not evolutionarily conserved. Shrew infection models relying on CSHBV/MSHBV revertants and human HBV will allow comparative assessments of HBeAg-mediated HBV pathogenesis, entry, and species barriers.


Assuntos
Evolução Molecular , Vírus da Hepatite B/genética , Vírus da Hepatite B/patogenicidade , Modelos Genéticos , Filogenia , Musaranhos/virologia , Proteínas do Envelope Viral/genética , Fatores de Virulência/genética , Animais , Linhagem Celular Tumoral , Hepatite B/genética , Hepatite B/metabolismo , Hepatite B/veterinária , Vírus da Hepatite B/metabolismo , Humanos
9.
Rev Med Virol ; 28(6): e2002, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30069956

RESUMO

Enteroviruses are among the best studied small non-enveloped enteric RNA viruses. Most enteroviruses are easy to isolate in cell culture, and many non-polio enterovirus strains were archived worldwide as a byproduct of the WHO poliovirus surveillance system. Common outbreaks and epidemics, most prominently the epidemic of hand-foot-and-mouth disease with severe neurological complications in East and South-East Asia, justify practical interest of non-polio enteroviruses. As a result, there are over 50 000 enterovirus nucleotide sequences available in GenBank. Technical possibilities have been also improving, as Bayesian phylogenetic methods with an integrated molecular clock were introduced a decade ago and provided unprecedented opportunities for phylogenetic analysis. As a result, hundreds of papers were published on the molecular epidemiology of enteroviruses. This review covers the modern methodology, structure, and biases of the sequence dataset available in GenBank. The relevance of the subtype classification, findings of co-circulation of multiple genetic variants, previously unappreciated complexity of viral populations, and global evolutionary patterns are addressed. The most relevant conclusions and prospects for further studies on outbreak emergence mechanisms are discussed.


Assuntos
Surtos de Doenças , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/virologia , Enterovirus/classificação , Enterovirus/isolamento & purificação , Variação Genética , Biologia Computacional/métodos , Enterovirus/genética , Genótipo , Saúde Global , Humanos , Epidemiologia Molecular , Filogenia , Análise de Sequência de DNA/métodos
10.
J Gen Virol ; 98(12): 2968-2981, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29095688

RESUMO

Non-polio enteroviruses are a ubiquitous and divergent group of non-enveloped RNA viruses. Novel types are reported regularly in addition to over 100 known types; however, mechanisms of emergence of novel types remain obscure. Here, the 33 most common types represented by 35-629 non-redundant partial VP1 sequences in GenBank were studied in parallel using Bayesian coalescent molecular clock analysis to investigate common evolutionary trends among enterovirus types. Inferred substitution rates were in the range of 0.41×10-2 to 3.07×10-2 substitutions per site per year. The most recent common ancestors of known isolates of each type presumably existed between 55 and 200 years ago. Phylogenetic analysis results suggested that global type populations underwent bottlenecks that could repeatedly reset the common ancestor dates. Nevertheless, species-level analysis suggested that the contemporary enterovirus types emerged within the last millennium. Analysis of 2657 complete VP1 sequences of the 24 most common types indicated that the type criterion based upon 75 % nucleotide sequence identity remains generally valid, despite exponential growth of the number of known sequences and a high rate of mutation fixation. However, in few types there was evidence that enteroviruses can drift slightly beyond the type threshold, up to 73 % identity, and both amino acid and nucleotide sequences should be considered for type identification. Analysis of sequence distances within types implied that sequence-identity-based identification of genotypes is rational within some, but not all, types and distinct genotype cut-offs (9-20 %) may be useful for different types.


Assuntos
Proteínas do Capsídeo/genética , Infecções por Enterovirus/epidemiologia , Enterovirus/genética , Evolução Molecular , Genoma Viral , Filogenia , Sequência de Aminoácidos , Sequência de Bases , Teorema de Bayes , Enterovirus/classificação , Infecções por Enterovirus/virologia , Variação Genética , Genótipo , Humanos , Epidemiologia Molecular , Taxa de Mutação , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA