Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Biomed Mater Res B Appl Biomater ; 106(2): 854-862, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28419752

RESUMO

INTRODUCTION: Current mechanical testing of surgical mesh focuses primarily on tensile properties even though implanted devices are not subjected to pure tensile loads. Our objective was to determine the flexural (bending) properties of surgical mesh and determine if they correlate with mesh tensile properties. METHODS: The flexural rigidity values of 11 different surgical mesh designs were determined along three textile directions (machine, cross-machine, and 45° to machine; n = 5 for each) using ASTM D1388-14 while tracking surface orientation. Tensile testing was also performed on the same specimens using ASTM D882-12. Linear regressions were performed to compare mesh flexural rigidity to mesh thickness, areal mass density, filament diameter, ultimate tensile strength, and maximum extension. RESULTS: Of 33 mesh specimen groups, 30 had significant differences in flexural rigidity values when comparing surface orientations (top and bottom). Flexural rigidity and mesh tensile properties also varied with textile direction (machine and cross-machine). There was no strong correlation between the flexural and tensile properties, with mesh thickness having the best overall correlation with flexural rigidity. CONCLUSIONS: Currently, surface orientation is not indicated on marketed surgical mesh, and a single mesh may behave differently depending on the direction of loading. The lack of correlation between flexural stiffness and tensile properties indicates the need to examine mesh bending stiffness to provide a more comprehensive understanding of surgical mesh mechanical behaviors. Further investigation is needed to determine if these flexural properties result in the surgical mesh behaving mechanically different depending on implantation direction. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 854-862, 2018.


Assuntos
Teste de Materiais , Telas Cirúrgicas , Resistência à Tração , Propriedades de Superfície
2.
Biointerphases ; 6(2): 43-53, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21721839

RESUMO

An ideal surface for implantable glucose sensors would be able to evade the events leading to chronic inflammation and fibrosis, thereby extending its utility in an in vivo environment. Nafion™, a perfluorinated ionomer, is the membrane material preferred for in situ glucose sensors. Unfortunately, the surface properties of Nafion™ promote random protein adsorption and eventual foreign body encapsulation, thus leading to loss of glucose signal over time. Details of the techniques to render Nafion™ nonprotein fouling are given in a previous article [T. I. Valdes et al., Biomaterials 29, 1356 (2008)]. Once random protein adsorption is prevented, a biologically active peptide can be covalently bonded to the treated Nafion™ to induce cellular adhesion. Cellular responses to these novel decorated Nafion™ surfaces are detailed here, including cell viability, cell spreading, and type I collagen synthesis. Normal human dermal fibroblasts (NHDFs) were cultured on control and modified Nafion™ surfaces. Findings indicate that Nafion™ modified with 10% 2-hydroxyethyl methacrylate and 90% tetraglyme created a nonfouling surface that was subsequently decorated with the YRGDS peptide. NHDFs were shown to have exhibited decreased type I collagen production in comparison to NHDF cells on unmodified Nafion™ surfaces. Here, the authors report evidence that proves that optimizing conditions to prevent protein adsorption and enhance cellular adhesion may eliminate fibrous encapsulation of an implant.


Assuntos
Técnicas Biossensoriais , Materiais Revestidos Biocompatíveis/efeitos adversos , Fibroblastos/fisiologia , Inflamação/induzido quimicamente , Próteses e Implantes/efeitos adversos , Células Cultivadas , Colágeno/metabolismo , Etilenoglicóis/metabolismo , Humanos , Metacrilatos/metabolismo
3.
Biomaterials ; 29(10): 1356-66, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18155292

RESUMO

Nafion is the membrane material preferred for in situ glucose sensors. Unfortunately, surface properties of Nafion promote random protein adsorption and eventual foreign body encapsulation thus leading to loss of glucose signal over time. Here we detail surface modifications made by RF plasma deposition to Nafion with the intent to prevent random protein adsorption while providing enough functional sites (hydroxyl groups) to bind a biologically active peptide known to induce cellular adhesion (YRGDS). Nafion surfaces were modified by RF plasma polymerizing five different combinations of (1) tetraethylene glycol dimethyl ether (tetraglyme) and (2) 2-hydroxyethyl methacrylate (HEMA): pure tetraglyme, 2.5% HEMA with 97.5% tetraglyme, 5% HEMA with 95% tetraglyme, 10% HEMA with 90% tetraglyme, and pure HEMA. Resultant surfaces were characterized by XPS (low and high resolution), dynamic contact angle, and atomic force microscopy. Protein adsorption and retention was determined and correlated to surface layer composition. The ability to bind a cell adhesion peptide was also determined and correlated well with surface layer composition.


Assuntos
Membranas Artificiais , Proteínas/química , Adsorção , Etilenoglicóis/química , Microscopia de Força Atômica , Estrutura Molecular , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA