Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Neuro Oncol ; 24(4): 571-581, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555175

RESUMO

BACKGROUND: Accurate CNS tumor diagnosis can be challenging, and methylation profiling can serve as an adjunct to classify diagnostically difficult cases. METHODS: An integrated diagnostic approach was employed for a consecutive series of 1258 surgical neuropathology samples obtained primarily in a consultation practice over 2-year period. DNA methylation profiling and classification using the DKFZ/Heidelberg CNS tumor classifier was performed, as well as unsupervised analyses of methylation data. Ancillary testing, where relevant, was performed. RESULTS: Among the received cases in consultation, a high-confidence methylation classifier score (>0.84) was reached in 66.4% of cases. The classifier impacted the diagnosis in 46.7% of these high-confidence classifier score cases, including a substantially new diagnosis in 26.9% cases. Among the 289 cases received with only a descriptive diagnosis, methylation was able to resolve approximately half (144, 49.8%) with high-confidence scores. Additional methods were able to resolve diagnostic uncertainty in 41.6% of the low-score cases. Tumor purity was significantly associated with classifier score (P = 1.15e-11). Deconvolution demonstrated that suspected glioblastomas (GBMs) matching as control/inflammatory brain tissue could be resolved into GBM methylation profiles, which provided a proof-of-concept approach to resolve tumor classification in the setting of low tumor purity. CONCLUSIONS: This work assesses the impact of a methylation classifier and additional methods in a consultative practice by defining the proportions with concordant vs change in diagnosis in a set of diagnostically challenging CNS tumors. We address approaches to low-confidence scores and confounding issues of low tumor purity.


Assuntos
Neoplasias do Sistema Nervoso Central , Glioblastoma , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/genética , Metilação de DNA , Glioblastoma/diagnóstico , Glioblastoma/genética , Humanos
2.
Sci Transl Med ; 13(587)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790025

RESUMO

Pegylated interferon-α (PEG-IFN-α), where IFN-α is attached to polyethylene glycol (PEG), is an approved treatment for chronic hepatitis B virus (HBV) infection, a disease that causes liver-related morbidity and mortality in 257 million people worldwide. It is unknown why only a minority of patients respond to PEG-IFN-α. Using sequential blood samples and liver biopsies of patients with chronic HBV infection before, during, and after PEG-IFN-α treatment, we find that patients with early natural killer (NK) cell activation after PEG-IFN-α injection experienced greater liver inflammation, lysis of HBV-infected hepatocytes, and hepatitis B surface antigen (HBsAg) decline than those without. NK cell activation was associated with induction of interferon-stimulated genes and determined by PEG-IFN-α pharmacokinetics. Patients with delayed increases in PEG-IFN-α concentrations had greater amounts of PEG-specific immunoglobulin M (IgM) immune complexes in the blood and more PEG and IgM detected in the liver than patients with rapid increase in PEG-IFN-α concentration. This was associated with reduced NK cell activation. These results indicate that the immunomodulatory functions of PEG-IFN-α, particularly activation of NK cells, play a pivotal role in the response to treatment and further demonstrate that these functions are affected by PEG-IFN-α pharmacokinetics. Accelerated clearance of antibody-complexed pegylated drugs by Kupffer cells may be important beyond the field of HBV therapeutics. Thus, these findings may contribute to improving the efficacy of pegylated drugs that are now being developed for other chronic diseases and cancer.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica , Antivirais/uso terapêutico , Hepatite B Crônica/tratamento farmacológico , Humanos , Células Matadoras Naturais , Células de Kupffer , Polietilenoglicóis , Proteínas Recombinantes/uso terapêutico , Resultado do Tratamento
3.
J Neurooncol ; 149(3): 383-390, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33057920

RESUMO

PURPOSE: Glioblastoma (GBM) is characterized by extensive clonal diversity suggesting the presence of tumor cells with varying degrees of treatment sensitivity. Radiotherapy is an integral part of glioblastoma treatment. Whether GBMs are comprised of spatially distinct cellular populations with uniform or varying degrees of radiosensitivity has not been established. METHODS: Spatially distinct regions of three GBMs (J3, J7 and J14) were resected and unique cell lines were derived from each region. DNA from cell lines, corresponding tumor fragments, and patient blood was extracted for whole exome sequencing. Variants, clonal composition, and functional implications were compared and analyzed with superFreq and IPA. Limiting dilution assays were performed on cell lines to measure intrinsic radiosensitivity. RESULTS: Based on WES, cell lines generated from different regions of the same tumor were more closely correlated with their tumor of origin than the other GBMs. Variant and clonal composition comparisons showed that cell lines from distinct tumors displayed increasing levels of ITH with J3 and J14 having the lowest and highest, respectively. The radiosensitivities of the cell lines generated from the J3 tumor were similar as were those generated from the J7 tumor. However, the radiosensitivities of the 2 cell lines generated from the J14 tumor (J14T3 and J14T6) were significantly different with J14T6 being more sensitive than J14T3. CONCLUSION: Data suggest a tumor dependent ITH in radiosensitivity. The existence of ITH in radiosensitivity may impact not only the initial therapeutic response but also the effectiveness of retreatment protocols.


Assuntos
Biomarcadores Tumorais/genética , Sequenciamento do Exoma/métodos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioblastoma/patologia , Mutação , Tolerância a Radiação , Glioblastoma/genética , Glioblastoma/radioterapia , Humanos , Prognóstico , Células Tumorais Cultivadas
4.
Redox Biol ; 37: 101710, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32920226

RESUMO

Oxidative stress (OS) in non-alcoholic fatty liver disease (NAFLD) promotes liver injury and inflammation. Treatment with vitamin E (α-tocopherol, αT), a lipid-soluble antioxidant, improves liver injury but also decreases steatosis, thought to be upstream of OS, through an unknown mechanism. To elucidate the mechanism, we combined a mechanistic human trial interrogating pathways of intrahepatic triglyceride (IHTG) accumulation and in vitro experiments. 50% of NAFLD patients (n = 20) treated with αT (200-800 IU/d) for 24 weeks had a ≥ 25% relative decrease in IHTG by magnetic resonance spectroscopy. Paired liver biopsies at baseline and week 4 of treatment revealed a decrease in markers of hepatic de novo lipogenesis (DNL) that strongly predicted week 24 response. In vitro, using HepG2 cells and primary human hepatocytes, αT inhibited glucose-induced DNL by decreasing SREBP-1 processing and lipogenic gene expression. This mechanism is dependent on the antioxidant capacity of αT, as redox-silenced methoxy-αT is unable to inhibit DNL in vitro. OS by itself was sufficient to increase S2P expression in vitro, and S2P is upregulated in NAFLD livers. In summary, we utilized αT to demonstrate a vicious cycle in which NAFLD generates OS, which feeds back to augment DNL and increases steatosis. Clinicaltrials.gov: NCT01792115.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Lipogênese , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , Regulação para Cima , Vitamina E/metabolismo , Vitamina E/farmacologia
6.
Cancers (Basel) ; 11(11)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671773

RESUMO

Synthetic lethality exploits the phenomenon that a mutation in a cancer gene is often associated with new vulnerability which can be uniquely targeted therapeutically, leading to a significant increase in favorable outcome. DNA damage and survival pathways are among the most commonly mutated networks in human cancers. Recent data suggest that synthetic lethal interactions between a tumor defect and a DNA repair pathway can be used to preferentially kill tumor cells. We recently published a method, DiscoverSL, using multi-omic cancer data, that can predict synthetic lethal interactions of potential clinical relevance. Here, we apply the generality of our models in a comprehensive web tool called Synthetic Lethality Bio Discovery Portal (SL-BioDP) and extend the cancer types to 18 cancer genome atlas cohorts. SL-BioDP enables a data-driven computational approach to predict synthetic lethal interactions from hallmark cancer pathways by mining cancer's genomic and chemical interactions. Our tool provides queries and visualizations for exploring potentially targetable synthetic lethal interactions, shows Kaplan-Meier plots of clinical relevance, and provides in silico validation using short hairpin RNA (shRNA) and drug efficacy data. Our method would thus shed light on mechanisms of synthetic lethal interactions and lead to the discovery of novel anticancer drugs.

7.
Cancer Res ; 79(23): 6032-6043, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31615806

RESUMO

A consequence of the intratumor heterogeneity (ITH) of glioblastoma (GBM) is the susceptibility to treatment-driven evolution. To determine the potential of radiotherapy to influence GBM evolution, we used orthotopic xenografts initiated from CD133+ GBM stem-like cells (GSC). Toward this end, orthotopic xenografts grown in nude mice were exposed to a fractionated radiation protocol, which resulted in a significant increase in animal survival. Brain tumors from control and irradiated mice were then collected at morbidity and compared in terms of growth pattern, clonal diversity, and genomic architecture. In mice that received fractionated radiation, tumors were less invasive, with more clearly demarcated borders and tumor core hypercellularity as compared with controls, suggesting a fundamental change in tumor biology. Viral integration site analysis indicated a reduction in clonal diversity in the irradiated tumors, implying a decrease in ITH. Changes in clonal diversity were not detected after irradiation of GSCs in vitro, suggesting that the radiation-induced reduction in ITH was dependent on the brain microenvironment. Whole-exome sequencing revealed differences in mutation patterns between control and irradiated tumors, which included modifications in the presence and clonality of driver mutations associated with GBM. Moreover, changes in the distribution of mutations as a function of subpopulation size between control and irradiated tumors were consistent with subclone expansion and contraction, that is, subpopulation evolution. Taken together, these results indicate that radiation drives the evolution of the GSC-initiated orthotopic xenografts and suggest that radiation-driven evolution may have therapeutic implications for recurrent GBM. SIGNIFICANCE: Radiation drives the evolution of glioblastoma orthotopic xenografts; when translated to the clinic, this may have therapeutic implications for recurrent tumors.


Assuntos
Neoplasias Encefálicas/radioterapia , Evolução Molecular , Heterogeneidade Genética/efeitos da radiação , Glioblastoma/radioterapia , Células-Tronco Neoplásicas/efeitos da radiação , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Análise Mutacional de DNA , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Mutação/efeitos da radiação , Células-Tronco Neoplásicas/patologia , Tolerância a Radiação/genética , Microambiente Tumoral/genética , Microambiente Tumoral/efeitos da radiação , Sequenciamento do Exoma , Ensaios Antitumorais Modelo de Xenoenxerto
8.
mBio ; 10(4)2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363036

RESUMO

Hepatitis C virus (HCV) harnesses host dependencies to infect human hepatocytes. We previously identified a pivotal role of IκB kinase α (IKK-α) in regulating cellular lipogenesis and HCV assembly. In this study, we defined and characterized NF-κB-inducing kinase (NIK) as an IKK-α upstream serine/threonine kinase in IKK-α-mediated proviral effects and the mechanism whereby HCV exploits this innate pathway to its advantage. We manipulated NIK expression in Huh7.5.1 cells through loss- and gain-of-function approaches and examined the effects on IKK-α activation, cellular lipid metabolism, and viral assembly. We demonstrated that NIK interacts with IKK-α to form a kinase complex in association with the stress granules, in which IKK-α is phosphorylated upon HCV infection. Depletion of NIK significantly diminished cytosolic lipid droplet content and impaired HCV particle production. NIK overexpression enhanced HCV assembly, and this process was abrogated in cells deprived of IKK-α, suggesting that NIK acts upstream of IKK-α. NIK abundance was increased in HCV-infected hepatocytes, liver tissues from Alb-uPA/Scid mice engrafted with human hepatocytes, and chronic hepatitis C patients. NIK mRNA contains an miR-122 seed sequence binding site in the 3' untranslated region (UTR). miR-122 mimic and hairpin inhibitor directly affected NIK levels. In our hepatic models, miR-122 levels were significantly reduced by HCV infection. We demonstrated that HNF4A, a known transcriptional regulator of pri-miR-122, was downregulated by HCV infection. NIK represents a bona fide target of miR-122 whose transcription is downregulated by HCV through reduced HNF4A expression. This effect, together with the sequestering of miR-122 by HCV replication, results in "derepression" of NIK expression to deregulate lipid metabolism.IMPORTANCE Chronic hepatitis C virus (HCV) infection is a major global public health problem. Infection often leads to severe liver injury that may progress to cirrhosis, hepatocellular carcinoma, and death. HCV coopts cellular machineries for propagation and triggers pathological processes in the liver. We previously identified a pivotal role of IKK-α in regulating cellular lipid metabolism and HCV assembly. In this study, we characterized NIK as acting upstream of IKK-α and characterized how HCV exploits this innate pathway to its advantage. Through extensive mechanistic studies, we demonstrated that NIK is a direct target of miR-122, which is regulated at the transcription level by HNF4A, a hepatocyte-specific transcription factor. We show in HCV infection that NIK expression is increased while both HNF4A and miR-122 levels are decreased. NIK represents an important host dependency that links HCV assembly, hepatic lipogenesis, and miRNA biology.


Assuntos
Hepacivirus/patogenicidade , Hepatite C/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linhagem Celular , Hepatite C/genética , Humanos , Lipogênese/genética , Lipogênese/fisiologia , Fígado/metabolismo , Fígado/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Quinase Induzida por NF-kappaB
9.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30021897

RESUMO

Hepatitis B virus (HBV) infection is a major health problem worldwide, and chronically infected individuals are at high risk of developing cirrhosis and hepatocellular carcinoma (HCC). The molecular mechanisms whereby HBV causes HCC are largely unknown. Using a biologically relevant system of HBV infection of primary human hepatocytes (PHHs), we studied how HBV perturbs gene expression and signaling pathways of infected hepatocytes and whether these effects are relevant to productive HBV infection and HBV-associated HCC. Using a human growth factor antibody array, we first showed that HBV infection induced a distinct profile of growth factor production by PHHs, marked particularly by significantly lower levels of the transforming growth factor ß (TGF-ß) family of proteins in the supernatant. Transcriptome profiling next revealed multiple changes in cell proliferation and cell cycle control pathways in response to HBV infection. A human cell cycle PCR array validated deregulation of more than 20 genes associated with the cell cycle in HBV-infected PHHs. Cell cycle analysis demonstrated that HBV-infected PHHs are enriched in the G2/M phase compared to the predominantly G0/G1 phase of cultured PHHs. HBV proviral host factors, such as PPARA, RXRA, and CEBPB, were upregulated upon HBV infection and particularly enriched in cells in the G2/M phase. Together, these results support the notion that HBV deregulates cell cycle control to render a cellular environment that is favorable for productive HBV infection. By perturbing cell cycle regulation of infected cells, HBV may coincidently induce a premalignant phenotype that predisposes infected hepatocytes to subsequent malignant transformation.IMPORTANCE Hepatitis B virus (HBV) infection is a major health problem with high risk of developing hepatocellular carcinoma (HCC). By using a biologically relevant system of HBV infection of primary human hepatocytes (PHHs), we studied how HBV perturbs gene expression and whether these effects are relevant to HBV-associated HCC. HBV induced a distinct profile of growth factor production, marked particularly by significantly lower levels of the transforming growth factor ß (TGF-ß) family of proteins. Transcriptome profiling revealed multiple changes in cell proliferation and cell cycle control pathways. Cell cycle analysis demonstrated that HBV-infected PHHs are enriched in the G2/M phase. HBV proviral host factors were upregulated upon infection and particularly enriched in cells in the G2/M phase. Together, these results support the notion that HBV deregulates cell cycle control to render a cellular environment that is favorable for productive infection. This may coincidently induce a premalignant phenotype that predisposes infected hepatocytes to subsequent malignant transformation.


Assuntos
Carcinoma Hepatocelular/metabolismo , Ciclo Celular , Transformação Celular Viral/fisiologia , Vírus da Hepatite B/fisiologia , Hepatite B/metabolismo , Neoplasias Hepáticas/metabolismo , Replicação Viral/fisiologia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Células Hep G2 , Hepatite B/genética , Hepatite B/patologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo
10.
J Virol ; 92(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29118118

RESUMO

Host cells harbor various intrinsic mechanisms to restrict viral infections as a first line of antiviral defense. Viruses have evolved various countermeasures against these antiviral mechanisms. Here we show that N-Myc downstream-regulated gene 1 (NDRG1) limits productive hepatitis C virus (HCV) infection by inhibiting viral assembly. Interestingly, HCV infection downregulates NDRG1 protein and mRNA expression. The loss of NDRG1 increases the size and number of lipid droplets, which are the sites of HCV assembly. HCV suppresses NDRG1 expression by upregulating MYC, which directly inhibits the transcription of NDRG1 The upregulation of MYC also leads to the reduced expression of the NDRG1-specific kinase serum/glucocorticoid-regulated kinase 1 (SGK1), resulting in a markedly diminished phosphorylation of NDRG1. The knockdown of MYC during HCV infection rescues NDRG1 expression and phosphorylation, suggesting that MYC regulates NDRG1 at both the transcriptional and posttranslational levels. Overall, our results suggest that NDRG1 restricts HCV assembly by limiting lipid droplet formation. HCV counteracts this intrinsic antiviral mechanism by downregulating NDRG1 via a MYC-dependent mechanism.IMPORTANCE Hepatitis C virus (HCV) is an enveloped single-stranded RNA virus that targets hepatocytes in the liver. HCV is a leading cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma, and estimates suggest a global prevalence of 2.35%. Up to 80% of acutely infected individuals will develop chronic infection, and as many as 5% eventually progress to liver cancer. An understanding of the mechanisms behind virus-host interactions and viral carcinogenesis is still lacking. The significance of our research is that it identifies a previously unknown relationship between HCV and a known tumor-associated gene. Furthermore, our data point to a new role for this gene in the liver and in lipid metabolism. Thus, HCV infection serves as a great biological model to advance our knowledge of liver functions and the development of liver cancer.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Hepacivirus/fisiologia , Hepatite C/metabolismo , Hepatite C/virologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Gotículas Lipídicas/metabolismo , Montagem de Vírus , Replicação Viral , Proteínas de Ciclo Celular/genética , Linhagem Celular , Regulação da Expressão Gênica , Hepacivirus/isolamento & purificação , Hepatite C/genética , Hepatócitos/metabolismo , Hepatócitos/virologia , Interações Hospedeiro-Patógeno , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metabolismo dos Lipídeos , Modelos Biológicos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA