Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Sci Rep ; 14(1): 13114, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849374

RESUMO

Aberrant neuronal circuit dynamics are at the core of complex neuropsychiatric disorders, such as schizophrenia (SZ). Clinical assessment of the integrity of neuronal circuits in SZ has consistently described aberrant resting-state gamma oscillatory activity, decreased auditory-evoked gamma responses, and abnormal mismatch responses. We hypothesized that corticothalamic circuit manipulation could recapitulate SZ circuit phenotypes in rodent models. In this study, we optogenetically inhibited the mediodorsal thalamus-to-prefrontal cortex (MDT-to-PFC) or the PFC-to-MDT projection in rats and assessed circuit function through electrophysiological readouts. We found that MDT-PFC perturbation could not recapitulate SZ-linked phenotypes such as broadband gamma disruption, altered evoked oscillatory activity, and diminished mismatch negativity responses. Therefore, the induced functional impairment of the MDT-PFC pathways cannot account for the oscillatory abnormalities described in SZ.


Assuntos
Potenciais Evocados Auditivos , Optogenética , Córtex Pré-Frontal , Tálamo , Animais , Optogenética/métodos , Ratos , Córtex Pré-Frontal/fisiologia , Masculino , Tálamo/fisiologia , Esquizofrenia/fisiopatologia , Vias Neurais , Ratos Sprague-Dawley , Ritmo Gama/fisiologia , Sistema Límbico/fisiologia
2.
Br J Pharmacol ; 181(3): 495-508, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37823684

RESUMO

BACKGROUND AND PURPOSE: The integrated stress response (ISR) regulates translation in response to diverse stresses. ISR activation has been documented in amyotrophic lateral sclerosis (ALS) patients and ALS experimental models. In experimental models, both ISR stimulation and inhibition prevented ALS neurodegeneration; however, which mode of ISR regulation would work in patients is still debated. We previously demonstrated that the ISR modulator ISRIB (Integrated Stress Response InhiBitor, an eIF2B activator) enhances survival of neurons expressing the ALS neurotoxic allele SOD1 G93A. Here, we tested the effect of two ISRIB-like eIF2B activators (2BAct and PRXS571) in the disease progression of transgenic SOD1G93A mice. EXPERIMENTAL APPROACH: After biochemical characterization in primary neurons, SOD1G93A mice were treated with 2BAct and PRXS571. Muscle denervation of vulnerable motor units was monitored with a longitudinal electromyographic test. We used a clinical score to document disease onset and progression; force loss was determined with the hanging wire motor test. Motor neuronal survival was assessed by immunohistochemistry. KEY RESULTS: In primary neurons, 2BAct and PRXS571 relieve the ISR-imposed translational inhibition while maintaining high ATF4 levels. Electromyographic recordings evidenced an earlier and more dramatic muscle denervation in treated SOD1G93A mice that correlated with a decrease in motor neuron survival. Both compounds anticipated disease onset and shortened survival time. CONCLUSION AND IMPLICATIONS: 2BAct and PRXS571 anticipate disease onset, aggravating muscle denervation and motor neuronal death of SOD1G93A mice. This study reveals that the ISR works as a neuroprotective pathway in ALS motor neurons and reveals the toxicity that eIF2B activators may display in ALS patients.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Camundongos , Animais , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/genética , Fator de Iniciação 2B em Eucariotos , Superóxido Dismutase/metabolismo , Camundongos Transgênicos , Progressão da Doença , Modelos Animais de Doenças
3.
Bioengineering (Basel) ; 10(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38135941

RESUMO

Adaptive deep brain stimulation (aDBS) is a promising concept in the field of DBS that consists of delivering electrical stimulation in response to specific events. Dynamic adaptivity arises when stimulation targets dynamically changing states, which often calls for a reliable and fast causal estimation of the phase and amplitude of the signals. Here, we present an open-hardware implementation that exploits the concepts of resonators and Hilbert filters embedded in an open-hardware platform. To emulate real-world scenarios, we built a hardware setup that included a system to replay and process different types of physiological signals and test the accuracy of the instantaneous phase and amplitude estimates. The results show that the system can provide a precise and reliable estimation of the phase even in the challenging scenario of dealing with high-frequency oscillations (~250 Hz) in real-time. The framework might be adopted in neuromodulation studies to quickly test biomarkers in clinical and preclinical settings, supporting the advancement of aDBS.

4.
Rev. méd. hered ; 34(4): 202-206, oct.-dic. 2023. tab
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1560263

RESUMO

RESUMEN La diverticulosis es la presencia de divertículos en el tránsito intestinal, diverticulitis es la inflamación de los divertículos y ocurre en menos del 5% de pacientes con diverticulosis. El tratamiento quirúrgico de la diverticulitis aguda se aplica en los casos complicados. Tradicionalmente la operación de Hartmann es el procedimiento estándar en los casos de Diverticulitis aguda Hinchey III y IV, actualmente se recomienda individualizar el tratamiento quirúrgico en los casos de peritonitis purulenta no fecaloidea siendo el lavado peritoneal laparoscópico una opción factible. Objetivo : Describir los resultados del tratamiento quirúrgico de 4 pacientes con el diagnóstico de diverticulitis aguda Hinchey III sometidos al Lavado peritoneal en un centro privado. Material y métodos: Estudio descriptivo retrospectivo tipo serie de casos. Se recopiló información de historias clínicas para la descripción de los casos. Resultados: En los 4 pacientes intervenidos mediante el Lavado peritoneal laparoscópico, ninguno tuvo complicaciones postoperatorias ni mortalidad. Conclusiones: A juicio de los autores los beneficios del lavado peritoneal laparoscópico repercuten en una adecuada evolución postquirúrgica y generan calidad de vida en los pacientes intervenidos.


SUMMARY Diverticulosis is defined as the presence of diverticula in the intestine, when these diverticula become inflamed diverticulitis occurs, but this complication happens in less than 5% of these patients. Surgical treatment is indicated in complicated diverticulitis cases. Traditionally, the Hartmann procedure is carried out in patients with Hinchey III and IV acute diverticulitis. Currently, individualized surgical procedures are indicated in patients with non-fecal purulent peritonitis with laparoscopic peritoneal lavage as an optional choice. Objective: To report the results of laparoscopic peritoneal lavage in four patients with Hinchey III acute diverticulitis performed at a private clinic. Methods: Case series for which a review of patient clinical files was done. Results: No post-operative complications or mortality was found. Conclusions: based on authors judge, laparoscopic peritoneal lavage leads to an adequate post-operative evolution resulting in better quality of life.

5.
Br J Anaesth ; 131(3): 523-530, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37422414

RESUMO

BACKGROUND: Sugammadex has been associated with increases in the bispectral index (BIS). We evaluated the effects of sugammadex administration on quantitative electroencephalographic (EEG) and electromyographic (EMG) measures. METHODS: We performed a prospective observational study of adult male patients undergoing robot-assisted radical prostatectomy. All patients received a sevoflurane-based general anaesthetic and a continuous infusion of rocuronium, which was reversed with 2 mg kg-1 of sugammadex i.v. BIS, EEG, and EMG measures were captured with the BIS Vista™ monitor. RESULTS: Twenty-five patients were included in this study. Compared with baseline, BIS increased at 4-6 min (ß coefficient: 3.63; 95% confidence interval [CI]: 2.22-5.04; P<0.001), spectral edge frequency 95 (SEF95) increased at 2-4 min (ß coefficient: 0.29; 95% CI: 0.05-0.52; P=0.016) and 4-6 min (ß coefficient: 0.71; 95% CI: 0.47-0.94; P<0.001), and EMG increased at 4-6 min (ß coefficient: 1.91; 95% CI: 1.00-2.81; P<0.001) after sugammadex administration. Compared with baseline, increased beta power was observed at 2-4 min (ß coefficient: 93; 95% CI: 1-185; P=0.046) and 4-6 min (ß coefficient: 208; 95% CI: 116-300; P<0.001), and decreased delta power was observed at 4-6 min (ß coefficient: -526.72; 95% CI: -778 to -276; P<0.001) after sugammadex administration. Neither SEF95 nor frequency band data analysis adjusted for EMG showed substantial differences. None of the patients showed clinical signs of awakening. CONCLUSIONS: After neuromuscular block reversal with 2 mg kg-1 sugammadex, BIS, SEF95, EMG, and beta power showed small but statistically significant increases over time, while delta power decreased.


Assuntos
Bloqueio Neuromuscular , Robótica , Adulto , Humanos , Masculino , Sugammadex/farmacologia , Prostatectomia , Eletroencefalografia , Androstanóis
6.
eNeuro ; 10(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36931729

RESUMO

Brain function depends on complex circuit interactions between excitatory and inhibitory neurons embedded in local and long-range networks. Systemic GABAA-receptor (GABAAR) or NMDA-receptor (NMDAR) modulation alters the excitatory-inhibitory balance (EIB), measurable with electroencephalography (EEG). However, EEG signatures are complex in localization and spectral composition. We developed and applied analytical tools to investigate the effects of two EIB modulators, MK801 (NMDAR antagonist) and diazepam (GABAAR modulator), on periodic and aperiodic EEG features in freely-moving male Sprague Dawley rats. We investigated how, across three brain regions, EEG features are correlated with EIB modulation. We found that the periodic component was composed of seven frequency bands that presented region-dependent and compound-dependent changes. The aperiodic component was also different between compounds and brain regions. Importantly, the parametrization into periodic and aperiodic components unveiled correlations between quantitative EEG and plasma concentrations of pharmacological compounds. MK-801 exposures were positively correlated with the slope of the aperiodic component. Concerning the periodic component, MK-801 exposures correlated negatively with the peak frequency of low-γ oscillations but positively with those of high-γ and high-frequency oscillations (HFOs). As for the power, θ and low-γ oscillations correlated negatively with MK-801, whereas mid-γ correlated positively. Diazepam correlated negatively with the knee of the aperiodic component, positively to ß and negatively to low-γ oscillatory power, and positively to the modal frequency of θ, low-γ, mid-γ, and high-γ. In conclusion, correlations between exposures and pharmacodynamic effects can be better-understood thanks to the parametrization of EEG into periodic and aperiodic components. Such parametrization could be key in functional biomarker discovery.


Assuntos
Maleato de Dizocilpina , Receptores de GABA-A , Ratos , Animais , Masculino , Maleato de Dizocilpina/farmacologia , Ratos Sprague-Dawley , Eletroencefalografia , Diazepam/farmacologia
7.
Transl Psychiatry ; 12(1): 455, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307390

RESUMO

Neurexins are presynaptic transmembrane proteins crucial for synapse development and organization. Deletion and missense mutations in all three Neurexin genes have been identified in psychiatric disorders, with mutations in the NRXN1 gene most strongly linked to schizophrenia (SZ) and autism spectrum disorder (ASD). While the consequences of NRXN1 deletion have been extensively studied on the synaptic and behavioral levels, circuit endophenotypes that translate to the human condition have not been characterized yet. Therefore, we investigated the electrophysiology of cortico-striatal-thalamic circuits in Nrxn1α-/- rats and wildtype littermates focusing on a set of translational readouts, including spontaneous oscillatory activity, auditory-evoked oscillations and potentials, as well as mismatch negativity-like (MMN) responses and responses to social stimuli. On the behavioral level Nrxn1α-/- rats showed locomotor hyperactivity. In vivo freely moving electrophysiology revealed pronounced increases of spontaneous oscillatory power within the gamma band in all studied brain areas and elevation of gamma coherence in cortico-striatal and thalamocortical circuits of Nrxn1α-/- rats. In contrast, auditory-evoked oscillations driven by chirp-modulated tones showed reduced power in cortical areas confined to slower oscillations. Finally, Nrxn1α-/- rats exhibited altered auditory evoked-potentials and profound deficits in MMN-like responses, explained by reduced prediction error. Despite deficits for auditory stimuli, responses to social stimuli appeared intact. A central hypothesis for psychiatric and neurodevelopmental disorders is that a disbalance of excitation-to-inhibition is underlying oscillatory and sensory deficits. In a first attempt to explore the impact of inhibitory circuit modulation, we assessed the effects of enhancing tonic inhibition via δ-containing GABAA receptors (using Gaboxadol) on endophenotypes possibly associated with network hyperexcitability. Pharmacological experiments applying Gaboxadol showed genotype-specific differences, but failed to normalize oscillatory or sensory processing abnormalities. In conclusion, our study revealed endophenotypes in Nrxn1α-/- rats that could be used as translational biomarkers for drug development in psychiatric disorders.


Assuntos
Transtorno do Espectro Autista , Transtornos Mentais , Animais , Humanos , Ratos , Endofenótipos , Transtorno do Espectro Autista/genética , Potenciais Evocados Auditivos/fisiologia , Percepção , Eletroencefalografia
8.
Rev. cuba. hematol. inmunol. hemoter ; 38(2): e1502, abr.-jun. 2022. tab
Artigo em Espanhol | LILACS, CUMED | ID: biblio-1408451

RESUMO

Introducción: Los exosomas son vesículas extracelulares de tamaño nanométrico, que se generan cuando los endosomas multivesiculares se fusionan con la membrana plasmática y el contenido de las vesículas intraluminales se libera en el espacio extracelular. Son producidos por casi todos los tipos de células, en condiciones fisiológicas y patológicas. Transportan proteínas, lípidos y ácido ribonucleico (ARN) no codificante, desde la célula madre hasta la célula receptora, estos son considerados un punto clave en la regeneración de tejidos, lo que se ha demostrado en una serie de estudios, con diferentes tejidos corporales, como piel, cartílago, pancreático y tejidos cardiovasculares. Objetivo: Explicar los aspectos generales y posibles usos de los exosomas en el campo médico. Métodos: Se realizó una búsqueda de información mediante consulta en las bases de datos SciELO PubMed, Science Direct y Lilacs, en los idiomas español e inglés, con diferentes combinaciones de palabras claves y términos MESH como: exosomes, neovascularization, wound healing, immunity, micro RNA, immunology, therapy, classification. Se efectuó un análisis y resumen de la información revisada. Conclusiones: En la actualidad, los exosomas se han convertido en objeto de investigación para diversos tratamientos, medicamentos y uso como marcadores moleculares. Se destacan en terapias contra el cáncer, la inmunomodulación, la estimulación o supresión de la angiogénesis, regeneración cutánea, cicatrización y curación de heridas; por lo que de forma general resultan prometedores en el ámbito de las ciencias médicas(AU)


Introduction: Exosomes are nano-sized extracellular vesicles, which are generated when multivesicular endosomes fuse with the plasma membrane and the content of intraluminal vesicles released into the extracellular space. Are produced by almost all types of cells, under physiological and pathological conditions and they transport proteins, lipids and non-coding RNA (ribonucleic acid), from the stem cell to the recipient cell, these are considered a key point in tissue regeneration, which has been shown in a series of studies, with different body tissues, such as skin, cartilage, pancreatic and cardiovascular tissues. Objective: To explain the general aspects and possible uses of exosomes in the medical field. Methods: A search for information was carried out by consulting the Scielo, PubMed, ScienceDirect and Lilacs databases, in Spanish and English, with different combinations of keywords and MESH terms such as: exosomes, neovascularization, wound healing, immunity, microRNA, immunology, therapy, classification. Then, an analysis and summary of the reviewed information was carried out. Conclusions: Currently, exosomes have become the object of research for various treatments, drugs, and their use as molecular markers. They stand out in cancer therapies, immunomodulation, stimulation or suppression of angiogenesis, skin regeneration, and wound healing, which is why they are generally promising in the field of medical sciences(AU)


Assuntos
Endossomos , RNA não Traduzido , Alergia e Imunologia , Cicatrização
9.
Comput Methods Programs Biomed ; 218: 106728, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35299138

RESUMO

BACKGROUND AND OBJECTIVE: Despite advances on signal analysis and artificial intelligence, visual inspection is the gold standard in event detection on electroencephalographic recordings. This process requires much time of clinical experts on both annotating and training new experts for this same task. In scenarios where epilepsy is considered, the need for automatic tools is more prominent, as both seizures and interictal events can occur on hours- or days-long recordings. Although other solutions have already been proposed, most of them are not integrated on clinical and basic science environments due to their complexity and required specialization. Here we present a pipeline that arises from coordinated efforts between life-science researchers, clinicians and data scientists to develop an interactive and iterative workflow to train machine-learning tools for the automatic detection of electroencephalographic events in a variety of scenarios. METHODS: The approach consists on a series of subsequent steps covering data loading and configuration, event annotation, model training/re-training and event detection. With slight modifications, the combination of these blocks can cope with a variety of scenarios. To illustrate the flexibility and robustness of the approach, three datasets from clinical (patients of Dravet Syndrome) and basic research environments (mice model of the same disease) were evaluated. From them, and in response to researchers' daily needs, four real world examples of interictal event detection and seizure classification tasks were selected and processed. RESULTS: Results show that the current approach was of great aid for event annotation and model development. It was capable of creating custom machine-learning solutions for each scenario with slight adjustments on the analysis protocol, easily accessible to users without programming skills. Final annotator similarity metrics reached values above 80% on all cases of use, reaching 92.3% on interictal event detection on human recordings. CONCLUSIONS: The presented framework is easily adaptable to multiple real world scenarios and the interactive and ease-to-use approach makes it manageable to clinical and basic researches without programming skills. Nevertheless, it is conceived so data scientists can optimize it for specific scenarios, improving the knowledge transfer between these fields.


Assuntos
Inteligência Artificial , Epilepsia , Animais , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Humanos , Aprendizado de Máquina , Camundongos , Convulsões/diagnóstico
10.
J Neurochem ; 161(5): 417-434, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35253214

RESUMO

Cognitive deficits and impaired sensory processing are hallmarks of several neurodevelopmental and neuropsychiatric disorders. N-methyl-d-aspartate receptor (NMDAR) hypofunction contributes to these deficits by disrupting the excitation-to-inhibition balance in neuronal networks. Although preclinical data suggest that the activation of gamma-Aminobutyric acid B receptors (GABAB R) may restore excitation-to-inhibition balance and rescues some behavioral deficits, GABAB R agonists have failed to meet their clinical study endpoints, suggesting more complex interactions at play. Here, we studied the effects of Baclofen (a GABAB R agonist) and MK-801 (a non-competitive NMDAR antagonist) on the neurophysiology of limbic-auditory circuits in freely-moving rats. The pharmacological effects were assessed using resting-state EEG, auditory-evoked oscillation, and mismatch negativity paradigms. MK-801 elevated resting-state oscillatory power, mainly in the gamma and higher frequency ranges, and impaired auditory-evoked responses. Baclofen partially normalized resting-state oscillations but failed to rescue auditory-evoked oscillatory abnormalities. Coherence analysis indicated that NMDAR hypofunction alters the functional coupling of limbic and thalamocortical circuits in several frequency bands. Baclofen normalized only a fraction of MK-801-induced abnormalities (e.g., theta coherence between frontal cortex and amygdala) while reducing delta-theta and augmenting gamma coherence in thalamocortical circuits. Finally, we report that Baclofen intensified the MK-801-induced deficits in auditory mismatch responses. In summary, while Baclofen partially normalizes MK-801-induced gamma abnormalities, it either fails to rescue or exacerbates deficits in other phenotypes like functional coupling and auditory processing. We hope that the presented complex interactions between pharmacologically induced NMDAR hypofunction and GABABR agonism inspire a new understanding of the therapeutic potential around GABAergic modulation.


Assuntos
Maleato de Dizocilpina , Esquizofrenia , Animais , Baclofeno/toxicidade , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , Agonistas dos Receptores de GABA-B/farmacologia , Percepção , Ratos , Receptores de N-Metil-D-Aspartato , Esquizofrenia/induzido quimicamente
11.
Mol Ther Nucleic Acids ; 25: 585-602, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34589280

RESUMO

Dravet syndrome is a genetic encephalopathy characterized by severe epilepsy combined with motor, cognitive, and behavioral abnormalities. Current antiepileptic drugs achieve only partial control of seizures and provide little benefit on the patient's neurological development. In >80% of cases, the disease is caused by haploinsufficiency of the SCN1A gene, which encodes the alpha subunit of the Nav1.1 voltage-gated sodium channel. Novel therapies aim to restore SCN1A expression in order to address all disease manifestations. We provide evidence that a high-capacity adenoviral vector harboring the 6-kb SCN1A cDNA is feasible and able to express functional Nav1.1 in neurons. In vivo, the best biodistribution was observed after intracerebral injection in basal ganglia, cerebellum, and prefrontal cortex. SCN1A A1783V knockin mice received the vector at 5 weeks of age, when most neurological alterations were present. Animals were protected from sudden death, and the epileptic phenotype was attenuated. Improvement of motor performance and interaction with the environment was observed. In contrast, hyperactivity persisted, and the impact on cognitive tests was variable (success in novel object recognition and failure in Morris water maze tests). These results provide proof of concept for gene supplementation in Dravet syndrome and indicate new directions for improvement.

13.
Br J Anaesth ; 127(2): 245-253, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33896591

RESUMO

BACKGROUND: Dexmedetomidine is frequently used for sedation during deep brain stimulator implantation in patients with Parkinson's disease, but its effect on subthalamic nucleus activity is not well known. The aim of this study was to quantify the effect of increasing doses of dexmedetomidine in this population. METHODS: Controlled clinical trial assessing changes in subthalamic activity with increasing doses of dexmedetomidine (from 0.2 to 0.6 µg kg-1 h-1) in a non-operating theatre setting. We recorded local field potentials in 12 patients with Parkinson's disease with bilateral deep brain stimulators (24 nuclei) and compared basal activity in the nuclei of each patient and activity recorded with different doses. Plasma levels of dexmedetomidine were obtained and correlated with the dose administered. RESULTS: With dexmedetomidine infusion, patients became clinically sedated, and at higher doses (0.5-0.6 µg kg-1 h-1) a significant decrease in the characteristic Parkinsonian subthalamic activity was observed (P<0.05 in beta activity). All subjects awoke to external stimulus over a median of 1 (range: 0-9) min, showing full restoration of subthalamic activity. Dexmedetomidine dose administered and plasma levels showed a positive correlation (repeated measures correlation coefficient=0.504; P<0.001). CONCLUSIONS: Patients needing some degree of sedation throughout subthalamic deep brain stimulator implantation for Parkinson's disease can probably receive dexmedetomidine up to 0.6 µg kg-1 h-1 without significant alteration of their characteristic subthalamic activity. If patients achieve a 'sedated' state, subthalamic activity decreases, but they can be easily awakened with a non-pharmacological external stimulus and recover baseline subthalamic activity patterns in less than 10 min. CLINICAL TRIAL REGISTRATION: EudraCT 2016-002680-34; NCT-02982512.


Assuntos
Estimulação Encefálica Profunda/métodos , Dexmedetomidina/farmacologia , Hipnóticos e Sedativos/farmacologia , Doença de Parkinson/terapia , Núcleo Subtalâmico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espanha
14.
J Laparoendosc Adv Surg Tech A ; 31(3): 261-265, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33325786

RESUMO

Background: During the Health Emergency due to coronavirus disease 2019 (COVID-19) in Peru, elective surgeries were suspended and only emergency surgeries were allowed. Conservative management was considered as an alternative and laparoscopic surgery was indicated following safety recommendations. Surgically operated patients were at higher risk of becoming infected with COVID-19 due to hospital exposure, being more susceptible to complications. Methods: Retrospective cohort-type analytical study that includes patients who were admitted to a private center due to an emergency and who underwent laparoscopic gastrointestinal surgery during the National Health Emergency (group exposed to the COVID-19 pandemic) from March 11, 2020 to June 8, 2020 and were compared with those patients operated between March 11, 2019 and June 8, 2019 (group not exposed to the COVID-19 pandemic). Results: A total of 104 patients were identified, 59 patients operated during the COVID-19 pandemic. All were operated by laparoscopy, both groups with a similar degree of disease severity. There was no mortality or surgical reintervention. No surgeon at the institution was infected with the virus during the study period. Conclusions: The degree of severity of abdominal surgical pathologies in this time of pandemic has not increased compared with the previous year. Likewise, the laparoscopic approach to emergency surgery was safe and effective during the pandemic.


Assuntos
COVID-19/epidemiologia , Doenças do Sistema Digestório/cirurgia , Emergências , Serviço Hospitalar de Emergência/estatística & dados numéricos , Laparoscopia/estatística & dados numéricos , Pandemias , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Comorbidade , Doenças do Sistema Digestório/epidemiologia , Procedimentos Cirúrgicos Eletivos/estatística & dados numéricos , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Peru/epidemiologia , Estudos Retrospectivos , SARS-CoV-2 , Adulto Jovem
15.
Ann Biomed Eng ; 49(2): 746-756, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32918104

RESUMO

Imaging of small laboratory animals in clinical MRI scanners is feasible but challenging. Compared with dedicated preclinical systems, clinical scanners have relatively low B0 field (1.5-3.0 T) and gradient strength (40-60 mT/m). This work explored the use of wireless inductively coupled coils (ICCs) combined with appropriate pulse sequence parameters to overcome these two drawbacks, with a special emphasis on the optimization of the coil passive detuning circuit for this application. A Bengal rose photothrombotic stroke model was used to induce cortical infarction in rats and mice. Animals were imaged in a 3T scanner using T2 and T1-weighted sequences. In all animals, the ICCs allowed acquisition of high-quality images of the infarcted brain at acute and chronic stages. Images obtained with the ICCs showed a substantial increase in SNR compared to clinical coils (by factors of 6 in the rat brain and 16-17 in the mouse brain), and the absence of wires made the animal preparation workflow straightforward.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/instrumentação , Acidente Vascular Cerebral/diagnóstico por imagem , Animais , Desenho de Equipamento , Feminino , Masculino , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley
16.
PLoS One ; 15(10): e0240013, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33052958

RESUMO

On March 15, 2020 Puerto Rico implemented non-pharmaceutical interventions (NPIs), including a mandatory curfew, as part of a state of emergency declaration to prevent the community transmission of the SARS-CoV-2 virus. The strict enforcement of this curfew was extended through May 25, with a gradual relaxation beginning on May 1. This report summarizes an assessment of these early mitigation measures on the progression of the COVID-19 pandemic in the island. From March 15 to May 15, 2020, 70,656 results of molecular (RT-PCR) tests were reported to the Puerto Rico Department of Health. Of these, 1,704 were positive, corresponding to 1,311 individuals with COVID-19 included in the study. We derived the epidemic growth rates (r) and the corresponding reproductive numbers (R) from the epidemic curve of these 1,311 individuals with laboratory-confirmed diagnosis of COVID-19 using their date of test collection as a proxy for symptoms onset. Through May 31, 2020, there were 143 COVID-19 associated deaths in Puerto Rico, for a case fatality risk of 10.9%. We compared the observed cases and deaths with Gompertz model projections had the mitigation measures not been implemented. The number of daily RT-PCR-confirmed cases peaked on March 30 (85 cases), showing a weekly cyclical trend, with lower counts on weekends and a decreasing secular trend since March 30. The initial exponential growth rate (r) was 15.87% (95% CI: 7.59%, 24.15%), corresponding to R of 1.82 (95% CI:1.37, 2.30). After March 30, the r value reverted to an exponential decay rate (negative) of -2.95% (95% CI: -4.99%, -0.92%), corresponding to R of 0.93 (95% CI: 0.86, 0.98). We estimate that, had the initial growth rate been maintained, a total of 6,155 additional COVID-19 cases would have occurred by May 15, with 211 additional COVID-19 deaths by May 31. These findings are consistent with very effective implementation of early NPIs as mitigation measures in Puerto Rico. These results also provide a baseline to assess the impact of the transition from mitigation to subsequent containment stages in Puerto Rico.


Assuntos
Técnicas de Laboratório Clínico/estatística & dados numéricos , Controle de Doenças Transmissíveis/estatística & dados numéricos , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , COVID-19 , Teste para COVID-19 , Controle de Doenças Transmissíveis/normas , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/prevenção & controle , Humanos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Porto Rico , Gestão de Riscos
17.
Nat Commun ; 11(1): 1739, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32269213

RESUMO

Assimilation of novel strategies into a consolidated action repertoire is a crucial function for behavioral adaptation and cognitive flexibility. Acetylcholine in the striatum plays a pivotal role in such adaptation, and its release has been causally associated with the activity of cholinergic interneurons. Here we show that the midbrain, a previously unknown source of acetylcholine in the striatum, is a major contributor to cholinergic transmission in the striatal complex. Neurons of the pedunculopontine and laterodorsal tegmental nuclei synapse with striatal cholinergic interneurons and give rise to excitatory responses. Furthermore, they produce uniform inhibition of spiny projection neurons. Inhibition of acetylcholine release from midbrain terminals in the striatum impairs the association of contingencies and the formation of habits in an instrumental task, and mimics the effects observed following inhibition of acetylcholine release from striatal cholinergic interneurons. These results suggest the existence of two hierarchically-organized modes of cholinergic transmission in the striatum, where cholinergic interneurons are modulated by cholinergic neurons of the midbrain.


Assuntos
Neurônios Colinérgicos/fisiologia , Mesencéfalo/fisiologia , Neostriado/fisiologia , Rede Nervosa/fisiologia , Neurônios Aferentes/fisiologia , Animais , Comportamento Animal , Feminino , Objetivos , Interneurônios/fisiologia , Masculino , Camundongos , Optogenética , Fosforilação , Ratos Long-Evans , Sinapses/fisiologia
18.
Eur J Paediatr Neurol ; 24: 134-141, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31879226

RESUMO

OBJECTIVE: To evaluate the capability of children with Dravet syndrome to generate brain γ-oscillatory activity in response to auditory steady-state stimulation. METHODS: Fifty-one subjects were included: 13 with Dravet syndrome with SCN1A gene alterations, 26 with non-Dravet epilepsies and 12 healthy controls. Responses to auditory steady-state stimulation elicited with a chirp-modulated tone between 1 and 120 Hz were collected in subjects and compared across groups. RESULTS: Subjects with Dravet syndrome showed weak or no responses in the 1-120 Hz frequency range. Healthy controls showed oscillatory responses following the frequency of the modulation that were maximal in the low (30-70 Hz) and high (80-120) γ-ranges both, in the power and inter-trial coherence estimates. Non-Dravet epileptic children showed differences in the auditory responses when compared with the healthy controls but were able to generate oscillatory evoked activities following the frequency-varying stimulation. CONCLUSIONS: The ability to generate brain γ-oscillatory activity of children with Dravet in response to a chirp-modulated auditory stimulus is highly impaired, is not due to epilepsy and is consistent with the Nav1.1 channel dysfunction affecting interneuron activity seen in Dravet mouse models. SIGNIFICANCE: The reported deficits in the brain oscillatory activity evoked by chirp modulated tones in children with Dravet is compatible with Dravet syndrome disease mechanisms and constitutes a potential biomarker for future disease-modifying interventions.


Assuntos
Encéfalo/fisiopatologia , Epilepsias Mioclônicas/fisiopatologia , Ritmo Gama/fisiologia , Estimulação Acústica , Adolescente , Animais , Criança , Pré-Escolar , Epilepsias Mioclônicas/genética , Feminino , Humanos , Masculino , Camundongos
19.
Sci Rep ; 9(1): 14172, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578435

RESUMO

Dravet Syndrome (DS) is an encephalopathy with epilepsy associated with multiple neuropsychiatric comorbidities. In up to 90% of cases, it is caused by functional happloinsufficiency of the SCN1A gene, which encodes the alpha subunit of a voltage-dependent sodium channel (Nav1.1). Preclinical development of new targeted therapies requires accessible animal models which recapitulate the disease at the genetic and clinical levels. Here we describe that a C57BL/6 J knock-in mouse strain carrying a heterozygous, clinically relevant SCN1A mutation (A1783V) presents a full spectrum of DS manifestations. This includes 70% mortality rate during the first 8 weeks of age, reduced threshold for heat-induced seizures (4.7 °C lower compared with control littermates), cognitive impairment, motor disturbances, anxiety, hyperactive behavior and defects in the interaction with the environment. In contrast, sociability was relatively preserved. Electrophysiological studies showed spontaneous interictal epileptiform discharges, which increased in a temperature-dependent manner. Seizures were multifocal, with different origins within and across individuals. They showed intra/inter-hemispheric propagation and often resulted in generalized tonic-clonic seizures. 18F-labelled flourodeoxyglucose positron emission tomography (FDG-PET) revealed a global increase in glucose uptake in the brain of Scn1aWT/A1783V mice. We conclude that the Scn1aWT/A1783V model is a robust research platform for the evaluation of new therapies against DS.


Assuntos
Epilepsias Mioclônicas/genética , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Animais , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Cognição , Excitabilidade Cortical , Epilepsias Mioclônicas/fisiopatologia , Feminino , Heterozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Movimento , Tomografia por Emissão de Pósitrons , Comportamento Social
20.
Brain Stimul ; 11(1): 231-238, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29051091

RESUMO

BACKGROUND: High-frequency deep brain stimulation (DBS) has become a widespread therapy used in the treatment of Parkinson's Disease (PD) and other diseases. Although it has proved beneficial, much recent attention has been centered around the potential of new closed-loop DBS implementations. OBJECTIVE: Here we present a new closed-loop DBS scheme based on the phase of the theta activity recorded from the motor cortex. By testing the implementation on freely moving 6-OHDA lesioned and control rats, we assessed the behavioral and neurophysiologic effects of this implementation and compared it against the classical high-frequency DBS. RESULTS: Results show that both stimulation modalities produce significant and opposite changes on the movement and neurophysiological activity. Close-loop stimulation, far from improving the animals' behavior, exert contrary effects to those of high-frequency DBS which reverts the parkinsonian symptoms. Motor improvement during open-loop, high-frequency DBS was accompanied by a reduction in the amount of cortical beta oscillations while akinetic and disturbed behavior during close-loop stimulation coincided with an increase in the amplitude of beta activity. CONCLUSION: Cortical-phase-dependent close-loop stimulation of the STN exerts significant behavioral and oscillatory changes in the rat model of PD. Open-loop and close-loop stimulation outcomes differed dramatically, thus suggesting that the scheme of stimulation determines the output of the modulation even if the target structure is maintained. The current framework could be extended in future studies to identify the correct parameters that would provide a suitable control signal to the system. It may well be that with other stimulation parameters, this sort of DBS could be beneficial.


Assuntos
Estimulação Encefálica Profunda/métodos , Locomoção/fisiologia , Córtex Motor/fisiopatologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Animais , Modelos Animais de Doenças , Masculino , Destreza Motora/fisiologia , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/terapia , Ratos , Ratos Wistar , Ritmo Teta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA