Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Biochimie ; 214(Pt B): 1-10, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37315762

RESUMO

Snake venom protein synthesis undergoes finely regulated processes in the specialized secretory epithelium within the venom gland. Such processes occur within a defined period in the cell and at specific cellular locations. Thus, the determination of subcellular proteomes allows the characterization of protein groups for which the site may be relevant to their biological roles, thereby allowing the deconvolution of complex biological circuits into functional information. In this regard, we performed subcellular fractionation of proteins from B. jararaca venom gland, focusing on nuclear proteins since this cellular compartment comprises key effectors that shape gene expression. Our results provided a snapshot of B. jararaca's subcellular venom gland proteome and pointed to a 'conserved' proteome core among different life stages (newborn and adult) and between sexes (adult male and female). Overall, the top 15 highly abundant proteins identified in B. jararaca venom glands mirrored the panel of highly expressed genes in human salivary glands. Therefore, the expression profile observed for such a protein set could be considered a conserved core signature of salivary gland secretory epithelium. Moreover, the newborn venom gland displayed a unique expression signature of transcription factors involved in regulating transcription and biosynthetic processes and may mirror biological constraints of the ontogenetic development of B. jararaca, contributing to venom proteome diversity.


Assuntos
Bothrops , Venenos de Crotalídeos , Animais , Humanos , Recém-Nascido , Feminino , Masculino , Proteoma/metabolismo , Bothrops/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Nucleares/metabolismo
2.
Mol Biol Evol ; 40(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37352150

RESUMO

Snake venoms harbor a wide and diverse array of enzymatic and nonenzymatic toxic components, allowing them to exert myriad effects on their prey. However, they appear to trend toward a few optimal compositional scaffolds, dominated by four major toxin classes: SVMPs, SVSPs, 3FTxs, and PLA2s. Nevertheless, the latter appears to be restricted to vipers and elapids, as it has never been reported as a major venom component in rear-fanged species. Here, by investigating the original transcriptomes from 19 species distributed in eight genera from the Pseudoboini tribe (Dipsadidae: Xenodontinae) and screening among seven additional tribes of Dipsadidae and three additional families of advanced snakes, we discovered that a novel type of venom PLA2, resembling a PLA2-IIE, has been recruited to the venom of some species of the Pseudoboini tribe, where it is a major component. Proteomic and functional analyses of these venoms further indicate that these PLA2s play a relevant role in the venoms from this tribe. Moreover, we reconstructed the phylogeny of PLA2s across different snake groups and show that different types of these toxins have been recruited in at least five independent events in caenophidian snakes. Additionally, we present the first compositional profiling of Pseudoboini venoms. Our results demonstrate how relevant phenotypic traits are convergently recruited by different means and from homologous and nonhomologous genes in phylogenetically and ecologically divergent snake groups, possibly optimizing venom composition to overcome diverse adaptative landscapes.


Assuntos
Colubridae , Proteômica , Animais , Venenos de Serpentes/genética , Fosfolipases A2/genética , Filogenia , Colubridae/genética , Serpentes
3.
J Proteomics ; 277: 104853, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36804625

RESUMO

MOTIVATION: There are several well-established paradigms for identifying and pinpointing discriminative peptides/proteins using shotgun proteomic data; examples are peptide-spectrum matching, de novo sequencing, open searches, and even hybrid approaches. Such an arsenal of complementary paradigms can provide deep data coverage, albeit some unidentified discriminative peptides remain. RESULTS: We present DiagnoMass, software tool that groups similar spectra into spectral clusters and then shortlists those clusters that are discriminative for biological conditions. DiagnoMass then communicates with proteomic tools to attempt the identification of such clusters. We demonstrate the effectiveness of DiagnoMass by analyzing proteomic data from Escherichia coli, Salmonella, and Shigella, listing many high-quality discriminative spectral clusters that had thus far remained unidentified by widely adopted proteomic tools. DiagnoMass can also classify proteomic profiles. We anticipate the use of DiagnoMass as a vital tool for pinpointing biomarkers. AVAILABILITY: DiagnoMass and related documentation, including a usage protocol, are available at http://www.diagnomass.com.


Assuntos
Proteômica , Software , Proteômica/métodos , Proteínas/química , Peptídeos/química , Escherichia coli , Algoritmos , Bases de Dados de Proteínas
4.
Cell Death Discov ; 8(1): 324, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842415

RESUMO

Coronavirus disease 2019 (COVID-19) has affected over 400 million people worldwide, leading to 6 million deaths. Among the complex symptomatology of COVID-19, hypercoagulation and thrombosis have been described to directly contribute to lethality, pointing out platelets as an important SARS-CoV-2 target. In this work, we explored the platelet proteome of COVID-19 patients through a label-free shotgun proteomics approach to identify platelet responses to infection, as well as validation experiments in a larger patient cohort. Exclusively detected proteins (EPs) and differentially expressed proteins (DEPs) were identified in the proteomic dataset and thus classified into biological processes to map pathways correlated with pathogenesis. Significant changes in the expression of proteins related to platelet activation, cell death, and antiviral response through interferon type-I were found in all patients. Since the outcome of COVID-19 varies highly among individuals, we also performed a cross-comparison of proteins found in survivors and nonsurvivors. Proteins belonging to the translation pathway were strongly highlighted in the nonsurvivor group. Moreover, the SARS-CoV-2 genome was fully sequenced in platelets from five patients, indicating viral internalization and preprocessing, with CD147 as a potential entry route. In summary, platelets play a significant role in COVID-19 pathogenesis via platelet activation, antiviral response, and disease severity.

5.
Nat Protoc ; 17(7): 1553-1578, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35411045

RESUMO

Shotgun proteomics aims to identify and quantify the thousands of proteins in complex mixtures such as cell and tissue lysates and biological fluids. This approach uses liquid chromatography coupled with tandem mass spectrometry and typically generates hundreds of thousands of mass spectra that require specialized computational environments for data analysis. PatternLab for proteomics is a unified computational environment for analyzing shotgun proteomic data. PatternLab V (PLV) is the most comprehensive and crucial update so far, the result of intensive interaction with the proteomics community over several years. All PLV modules have been optimized and its graphical user interface has been completely updated for improved user experience. Major improvements were made to all aspects of the software, ranging from boosting the number of protein identifications to faster extraction of ion chromatograms. PLV provides modules for preparing sequence databases, protein identification, statistical filtering and in-depth result browsing for both labeled and label-free quantitation. The PepExplorer module can even pinpoint de novo sequenced peptides not already present in the database. PLV is of broad applicability and therefore suitable for challenging experimental setups, such as time-course experiments and data handling from unsequenced organisms. PLV interfaces with widely adopted software and community initiatives, e.g., Comet, Skyline, PEAKS and PRIDE. It is freely available at http://www.patternlabforproteomics.org .


Assuntos
Proteômica , Software , Bases de Dados de Proteínas , Proteínas/química , Proteômica/métodos , Espectrometria de Massas em Tandem
6.
Int J Mol Sci ; 22(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34445741

RESUMO

(1) Background: coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been linked to hematological dysfunctions, but there are little experimental data that explain this. Spike (S) and Nucleoprotein (N) proteins have been putatively associated with these dysfunctions. In this work, we analyzed the recruitment of hemoglobin (Hb) and other metabolites (hemin and protoporphyrin IX-PpIX) by SARS-Cov2 proteins using different approaches. (2) Methods: shotgun proteomics (LC-MS/MS) after affinity column adsorption identified hemin-binding SARS-CoV-2 proteins. The parallel synthesis of the peptides technique was used to study the interaction of the receptor bind domain (RBD) and N-terminal domain (NTD) of the S protein with Hb and in silico analysis to identify the binding motifs of the N protein. The plaque assay was used to investigate the inhibitory effect of Hb and the metabolites hemin and PpIX on virus adsorption and replication in Vero cells. (3) Results: the proteomic analysis by LC-MS/MS identified the S, N, M, Nsp3, and Nsp7 as putative hemin-binding proteins. Six short sequences in the RBD and 11 in the NTD of the spike were identified by microarray of peptides to interact with Hb and tree motifs in the N protein by in silico analysis to bind with heme. An inhibitory effect in vitro of Hb, hemin, and PpIX at different levels was observed. Strikingly, free Hb at 1mM suppressed viral replication (99%), and its interaction with SARS-CoV-2 was localized into the RBD region of the spike protein. (4) Conclusions: in this study, we identified that (at least) five proteins (S, N, M, Nsp3, and Nsp7) of SARS-CoV-2 recruit Hb/metabolites. The motifs of the RDB of SARS-CoV-2 spike, which binds Hb, and the sites of the heme bind-N protein were disclosed. In addition, these compounds and PpIX block the virus's adsorption and replication. Furthermore, we also identified heme-binding motifs and interaction with hemin in N protein and other structural (S and M) and non-structural (Nsp3 and Nsp7) proteins.


Assuntos
COVID-19/etiologia , Hemoglobinas/metabolismo , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , COVID-19/sangue , Hemina/metabolismo , Hemoglobinas/ultraestrutura , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios Proteicos , Proteômica , Protoporfirinas/metabolismo , SARS-CoV-2/patogenicidade , Proteínas não Estruturais Virais/ultraestrutura , Proteínas Estruturais Virais/ultraestrutura , Ligação Viral , Replicação Viral
7.
Front Mol Biosci ; 8: 787368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155563

RESUMO

DM64 is a toxin-neutralizing serum glycoprotein isolated from Didelphis aurita, an ophiophagous marsupial naturally resistant to snake envenomation. This 64 kDa antitoxin targets myotoxic phospholipases A2, which account for most local tissue damage of viperid snakebites. We investigated the noncovalent complex formed between native DM64 and myotoxin II, a myotoxic phospholipase-like protein from Bothrops asper venom. Analytical ultracentrifugation (AUC) and size exclusion chromatography indicated that DM64 is monomeric in solution and binds equimolar amounts of the toxin. Attempts to crystallize native DM64 for X-ray diffraction were unsuccessful. Obtaining recombinant protein to pursue structural studies was also challenging. Classical molecular modeling techniques were impaired by the lack of templates with more than 25% sequence identity with DM64. An integrative structural biology approach was then applied to generate a three-dimensional model of the inhibitor bound to myotoxin II. I-TASSER individually modeled the five immunoglobulin-like domains of DM64. Distance constraints generated by cross-linking mass spectrometry of the complex guided the docking of DM64 domains to the crystal structure of myotoxin II, using Rosetta. AUC, small-angle X-ray scattering (SAXS), molecular modeling, and molecular dynamics simulations indicated that the DM64-myotoxin II complex is structured, shows flexibility, and has an anisotropic shape. Inter-protein cross-links and limited hydrolysis analyses shed light on the inhibitor's regions involved with toxin interaction, revealing the critical participation of the first, third, and fifth domains of DM64. Our data showed that the fifth domain of DM64 binds to myotoxin II amino-terminal and beta-wing regions. The third domain of the inhibitor acts in a complementary way to the fifth domain. Their binding to these toxin regions presumably precludes dimerization, thus interfering with toxicity, which is related to the quaternary structure of the toxin. The first domain of DM64 interacts with the functional site of the toxin putatively associated with membrane anchorage. We propose that both mechanisms concur to inhibit myotoxin II toxicity by DM64 binding. The present topological characterization of this toxin-antitoxin complex constitutes an essential step toward the rational design of novel peptide-based antivenom therapies targeting snake venom myotoxins.

8.
J Proteomics ; 222: 103803, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32387712

RESUMO

We present the Mixed-Data Acquisition (MDA) strategy for mass spectrometry data acquisition. MDA combines Data-Dependent Acquisition (DDA) and Data-Independent Acquisition (DIA) in the same run, thus doing away with the requirements for separate DDA spectral libraries. MDA is a natural result from advances in mass spectrometry, such as high scan rates and multiple analyzers, and is tailored toward exploiting these features. We demonstrate MDA's effectiveness on a yeast proteome analysis by overcoming a common bottleneck for XIC-based label-free quantitation; namely, the coelution of precursors when m/z values cannot be distinguished. We anticipate that MDA will become the next mainstream data generation approach for proteomics. MDA can also serve as an orthogonal validation approach for DDA experiments. Specialized software for MDA data analysis is made available on the project's website.


Assuntos
Proteoma , Proteômica , Espectrometria de Massas , Software
9.
J Proteomics ; 221: 103761, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32247172

RESUMO

Snakebite envenoming affects millions of people worldwide, being officially considered a neglected tropical disease by the World Health Organization. The antivenom is effective in neutralizing the systemic effects of envenomation, but local effects are poorly neutralized, often leading to permanent disability. The natural resistance of the South American pit viper Bothrops jararaca to its venom is partly attributed to BJ46a, a natural snake venom metalloendopeptidase inhibitor. Upon complex formation, BJ46a binds non-covalently to the metalloendopeptidase, rendering it unable to exert its proteolytic activity. However, the structural features that govern this interaction are largely unknown. In this work, we applied structural mass spectrometry techniques (cross-linking-MS and hydrogen-deuterium exchange MS) and in silico analyses (molecular modeling, docking, and dynamics simulations) to understand the interaction between BJ46a and jararhagin, a metalloendopeptidase from B. jararaca venom. We explored the distance restraints generated from XL-MS experiments to guide the modeling of BJ46a and jararhagin, as well as the protein-protein docking simulations. HDX-MS data pinpointed regions of protection/deprotection at the interface of the BJ46a-jararhagin complex which, in addition to the molecular dynamics simulation data, reinforced our proposed interaction model. Ultimately, the structural understanding of snake venom metalloendopeptidases inhibition by BJ46a could lead to the rational design of drugs to improve anti-snake venom therapeutics, alleviating the high morbidity rates currently observed.


Assuntos
Bothrops , Venenos de Crotalídeos , Animais , Espectrometria de Massas , Metaloendopeptidases , Veneno de Bothrops jararaca
10.
Protist ; 170(6): 125698, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31760169

RESUMO

Strigomonas culicis is a kinetoplastid parasite of insects that maintains a mutualistic association with an intracellular symbiotic bacterium, which is highly integrated into the protist metabolism: it furnishes essential compounds and divides in synchrony with the eukaryotic nucleus. The protist, conversely, can be cured of the endosymbiont, producing an aposymbiotic cell line, which presents a diminished ability to colonize the insect host. This obligatory association can represent an intermediate step of the evolution towards the formation of an organelle, therefore representing an interesting model to understand the symbiogenesis theory. Here, we used shotgun proteomics to compare the S. culicis endosymbiont-containing and aposymbiotic strains, revealing a total of 11,305 peptides, and up to 2,213 proteins (2,029 and 1,452 for wild type and aposymbiotic, respectively). Gene ontology associated to comparative analysis between both strains revealed that the biological processes most affected by the elimination of the symbiont were the amino acid synthesis, as well as protein synthesis and folding. This large-scale comparison of the protein expression in S. culicis marks a step forward in the comprehension of the role of endosymbiotic bacteria in monoxenous trypanosomatid biology, particularly because trypanosomatids expression is mostly post-transcriptionally regulated.


Assuntos
Fenômenos Fisiológicos Bacterianos , Proteoma/genética , Simbiose/fisiologia , Trypanosomatina/microbiologia , Trypanosomatina/genética
11.
Toxicon ; 166: 76-82, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31121173

RESUMO

Nile tilapia (Oreochromis niloticus) is a freshwater phytoplanktivorous fish species reported to accumulate and tolerate large amounts of cyanotoxins such as microcystins (MCs). The present study aimed to investigate molecular responses to the acute exposure of Nile tilapia to the Microcystin-LA analogue (MC-LA). Thus, the specimens were sublethally exposed to 1000 µg kg-1 of MC-LA for 12, 24, 48, and 96 h. Gene expression of PP1, PP2A, GST, GPX and actin was analyzed by quantitative PCR. The protein abundance profile of PP2A was determined by immunoblotting, while the integrity of its biological function was assessed by a phosphatase enzymatic assay. PP2A activity was significantly and strongly reduced by MC-LA. A resulting feedback mechanism significantly increased PP2A gene expression and protein abundance in all assessed times. However, a recovery of that phosphatase activity was not observed. In this study, the observed increase in GPX gene expression was the only response that could be directly related to the unknown factors associated to the fish survival to such high dose exposure.


Assuntos
Ciclídeos/metabolismo , Microcistinas/toxicidade , Actinas/genética , Actinas/metabolismo , Animais , Ciclídeos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Injeções Intraperitoneais , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo
12.
Data Brief ; 22: 516-521, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30671503

RESUMO

The data presented herein is related to the article entitled "Trypanosoma cruzi immunoproteome: calpain-like CAP5.5 differentially detected throughout distinct stages of human Chagas disease cardiomyopathy" [1]. Electrophoretic analyses under denaturing and reducing conditions indicate that covalent immobilization of human IgG to Protein G magnetic beads by cross-linking with 50 mM dimethyl pimelimidate hinders the recognition of T. cruzi antigens in immunoprecipitation assays.

13.
J Proteomics ; 194: 179-190, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30503829

RESUMO

Chagas disease, caused by the protozoan Trypanosoma cruzi, affects millions of people worldwide, especially in Latin America. Approximately 30% of the cases evolve to the chronic symptomatic stage due to cardiac and/or digestive damage, generally accompanied by nervous system impairment. Given the higher frequency and severity of clinical manifestations related to cardiac tissue lesion, the goal of this study was the identification of proteins associated with the disease progression towards its cardiac form. Thus, T. cruzi bloodstream trypomastigotes proteins were submitted to immunoprecipitation using antibodies from patients with the asymptomatic or cardiac (stages B1 and C) forms of the disease and from healthy donors as control. Immunoreactive proteins were identified and quantified based on mass spectrometry analysis and shifts in the recognition profile were further evaluated. Compared to asymptomatic samples, IgG from stage C patients predominantly detected the I/6 autoantigen, whereas IgG from B1 patients resulted in higher yield of dihydrolipoamide acetyltransferase precursor, calpain cysteine peptidase, and two variants of CAP5.5. In this work, CAP5.5 recognition by serum immunoglobulin from patients with early cardiomyopathy generated a 23-fold abundance variation when compared to samples from asymptomatic patients, highlighting the participation of this protein in cardiac form progression of the disease. SIGNIFICANCE: While T. cruzi has become the major cause of infectious cardiomyopathy in Latin America, research groups have been struggling to find alternative treatment, vaccine candidates, and improved diagnostic tests. In addition, the absence of adequate biomarkers to assess cure and progression of disease is a major setback for clinical trials and patients monitoring. Therefore, our findings may contribute to a better understanding of T. cruzi pathogenesis and evaluation of suitable candidates for vaccine and diagnostic tests, besides the clinical applicability of the potential biomarkers for patient follow-up and prognosis. Finally, the identification of T. cruzi proteins recognized by IgG from healthy donors may contribute for the understanding and discovery of epitope conservation among a broad range of pathogens.


Assuntos
Calpaína , Cardiomiopatia Chagásica , Proteínas de Protozoários , Trypanosoma cruzi , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Calpaína/sangue , Calpaína/imunologia , Cardiomiopatia Chagásica/sangue , Cardiomiopatia Chagásica/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Proteínas de Protozoários/sangue , Proteínas de Protozoários/imunologia , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/imunologia
14.
J Proteomics ; 181: 60-72, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29621647

RESUMO

Elucidating the molecular mechanisms underlying snake venom variability provides important clues for understanding how the biological functions of this powerful toxic arsenal evolve. We analyzed in detail individual transcripts and venom protein isoforms produced by five specimens of a venomous snake (Bothrops atrox) from two nearby but genetically distinct populations from the Brazilian Amazon rainforest which show functional similarities in venom properties. Individual variation was observed among the venoms of these specimens, but the overall abundance of each general toxin family was conserved both in transcript and in venom protein levels. However, when expression of independent paralogues was analyzed, remarkable differences were observed within and among each toxin group, both between individuals and between populations. Transcripts for functionally essential venom proteins ("core function" proteins) were highly expressed in all specimens and showed similar transcription/translation rates. In contrast, other paralogues ("adaptive" proteins) showed lower expression levels and the toxins they coded for varied among different individuals. These results provide support for the inferences that (a) expression and translational differences play a greater role in defining adaptive variation in venom phenotypes than does sequence variation in protein coding genes and (b) convergent adaptive venom phenotypes can be generated through different molecular mechanisms. SIGNIFICANCE: Analysis of individual transcripts and venom protein isoforms produced by specimens of a venomous snake (Bothrops atrox), from the Brazilian Amazon rainforest, revealed that transcriptional and translational mechanisms contribute to venom phenotypic variation. Our finding of evidence for high expression of toxin proteins with conserved function supports the hypothesis that the venom phenotype consists of two kinds of proteins: conserved "core function" proteins that provide essential functional activities with broader relevance and less conserved "adaptive" proteins that vary in expression and may permit customization of protein function. These observations allowed us to suggest that genetic mechanisms controlling venom variability are not restricted to selection of gene copies or mutations in structural genes but also to selection of the mechanisms controlling gene expression, contributing to the plasticity of this important phenotype for venomous snakes.


Assuntos
Bothrops/metabolismo , Venenos de Crotalídeos/metabolismo , Proteoma/metabolismo , Animais , Especificidade da Espécie
15.
J Proteomics ; 159: 32-46, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28274896

RESUMO

Venom variability is commonly reported for venomous snakes including Bothrops atrox. Here, we compared the composition of venoms from B. atrox snakes collected at Amazonian conserved habitats (terra-firme upland forest and várzea) and human modified areas (pasture and degraded areas). Venom samples were submitted to shotgun proteomic analysis as a whole or compared after fractionation by reversed-phase chromatography. Whole venom proteomes revealed a similar composition among the venoms with predominance of SVMPs, CTLs, and SVSPs and intermediate amounts of PLA2s and LAAOs. However, when distribution of particular isoforms was analyzed by either method, the venom from várzea snakes showed a decrease in hemorrhagic SVMPs and an increase in SVSPs, and procoagulant SVMPs and PLA2s. These differences were validated by experimental approaches including both enzymatic and in vivo assays, and indicated restrictions in respect to antivenom efficacy to variable components. Thus, proteomic analysis at the isoform level combined to in silico prediction of functional properties may indicate venom biological activity. These results also suggest that the prevalence of functionally distinct isoforms contributes to the variability of the venoms and could reflect the adaptation of B. atrox to distinct prey communities in different Amazon habitats. BIOLOGICAL SIGNIFICANCE: In this report, we compared isoforms present in venoms from snakes collected at different Amazonian habitats. By means of a species venom gland transcriptome and the in silico functional prediction of each isoform, we were able to predict the principal venom activities in vitro and in animal models. We also showed remarkable differences in the venom pools from snakes collected at the floodplain (várzea habitat) compared to other habitats. Not only was this venom less hemorrhagic and more procoagulant, when compared to the venom pools from the other three habitats studied, but also this enhanced procoagulant activity was not efficiently neutralized by Bothrops antivenom. Thus, using a functional proteomic approach, we highlighted intraspecific differences in B. atrox venom that could impact both in the ecology of snakes but also in the treatment of snake bite patients in the region.


Assuntos
Bothrops/metabolismo , Venenos de Crotalídeos/biossíntese , Ecossistema , Glândulas Exócrinas/metabolismo , Proteômica , Animais , Bothrops/genética , Brasil , Venenos de Crotalídeos/genética , Transcriptoma/fisiologia
16.
J Proteomics ; 151: 204-213, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-27216643

RESUMO

DM64 is a glycosylated protein with antivenom activity isolated from the serum of the opossum Didelphis aurita. It binds non-covalently to myotoxins I (Asp49) and II (Lys49) from Bothrops asper venom and inhibits their myotoxic effect. In this study, an affinity column with immobilized DM64 as bait was used to fish potential target toxins. All ten isolated myotoxins tested were able to effectively bind to the DM64 column. To better access the specificity of the inhibitor, crude venoms from Bothrops (8 species), Crotalus (2 species) and Naja naja atra were submitted to the affinity purification. Venom fractions bound and nonbound to the DM64 column were analyzed by two-dimensional gel electrophoresis and MALDI-TOF/TOF MS. Although venom fractions bound to the column were mainly composed of basic PLA2, a few spots corresponding to acidic PLA2 were also observed. Some unexpected protein spots were also identified: C-type lectins and CRISP may represent putative new targets for DM64, whereas the presence of serine peptidases in the venom bound fraction is likely a consequence of nonspecific binding to the column matrix. The present results contribute to better delineate the inhibitory potential of DM64, providing a framework for the development of more specific antivenom therapies. BIOLOGICAL SIGNIFICANCE: Local tissue damage induced by myotoxic PLA2 remains a serious consequence of snake envenomation, since it is only partially neutralized by traditional antivenom serotherapy. Myotoxin inhibition by highly specific molecules offers great promise in the treatment of snakebites, a health problem largely neglected by governments and pharmaceutical industries. Bioactive compounds such as DM64 can represent a valuable source of scaffolds for drug development in this area. The present study has systematically profiled the binding specificity of DM64 toward a variety of snake venom toxin classes and therefore can lead to a better understanding of the structure-function relationship of this important antivenom protein.


Assuntos
Proteínas Sanguíneas/metabolismo , Venenos de Crotalídeos/antagonistas & inibidores , Animais , Proteínas Sanguíneas/uso terapêutico , Cromatografia de Afinidade , Eletroforese em Gel Bidimensional , Fosfolipases A/análise , Fosfolipases A/antagonistas & inibidores , Ligação Proteica , Proteômica/métodos , Especificidade da Espécie , Espectrometria de Massas em Tandem , Toxinas Biológicas/análise , Toxinas Biológicas/antagonistas & inibidores
17.
J Proteomics ; 151: 214-231, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-27373870

RESUMO

A large-scale proteomic approach was devised to advance the understanding of venom composition. Bothrops jararaca venom was fractionated by OFFGEL followed by chromatography, generating peptidic and proteic fractions. The latter was submitted to trypsin digestion. Both fractions were separately analyzed by reversed-phase nanochromatography coupled to high resolution mass spectrometry. This strategy allowed deeper and joint characterizations of the peptidome and proteome (proteopeptidome) of this venom. Our results lead to the identification of 46 protein classes (with several uniquely assigned proteins per class) comprising eight high-abundance bona fide venom components, and 38 additional classes in smaller quantities. This last category included previously described B. jararaca venom proteins, common Elapidae venom constituents (cobra venom factor and three-finger toxin), and proteins typically encountered in lysosomes, cellular membranes and blood plasma. Furthermore, this report is the most complete snake venom peptidome described so far, both in number of peptides and in variety of unique proteins that could have originated them. It is hypothesized that such diversity could enclose cryptides, whose bioactivities would contribute to envenomation in yet undetermined ways. Finally, we propose that the broad range screening of B. jararaca peptidome will facilitate the discovery of bioactive molecules, eventually leading to valuable therapeutical agents. BIOLOGICAL SIGNIFICANCE: Our proteopeptidomic strategy yielded unprecedented insights into the remarkable diversity of B. jararaca venom composition, both at the peptide and protein levels. These results bring a substantial contribution to the actual pursuit of large-scale protein-level assignment in snake venomics. The detection of typical elapidic venom components, in a Viperidae venom, reinforces our view that the use of this approach (hand-in-hand with transcriptomic and genomic data) for venom proteomic analysis, at the specimen-level, can greatly contribute for venom toxin evolution studies. Furthermore, data were generated in support of a previous hypothesis that venom gland secretory vesicles are specialized forms of lysosomes. Two testable hypotheses also emerge from the results of this work. The first is that a nucleobindin-2-derived protein could lead to prey disorientation during envenomation, aiding in its capture by the snake. The other being that the venom's peptidome might contain a population of cryptides, whose biological activities could lead to the development of new therapeutical agents.


Assuntos
Bothrops , Venenos de Crotalídeos/química , Proteoma/análise , Animais , Benchmarking , Proteínas de Ligação ao Cálcio/análise , Proteínas de Ligação a DNA/análise , Lisossomos/química , Proteínas do Tecido Nervoso/análise , Nucleobindinas , Peptídeos/análise , Proteínas/análise
18.
Toxins (Basel) ; 8(9)2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27571103

RESUMO

The research on natural snake venom metalloendopeptidase inhibitors (SVMPIs) began in the 18th century with the pioneering work of Fontana on the resistance that vipers exhibited to their own venom. During the past 40 years, SVMPIs have been isolated mainly from the sera of resistant animals, and characterized to different extents. They are acidic oligomeric glycoproteins that remain biologically active over a wide range of pH and temperature values. Based on primary structure determination, mammalian plasmatic SVMPIs are classified as members of the immunoglobulin (Ig) supergene protein family, while the one isolated from muscle belongs to the ficolin/opsonin P35 family. On the other hand, SVMPIs from snake plasma have been placed in the cystatin superfamily. These natural antitoxins constitute the first line of defense against snake venoms, inhibiting the catalytic activities of snake venom metalloendopeptidases through the establishment of high-affinity, non-covalent interactions. This review presents a historical account of the field of natural resistance, summarizing its main discoveries and current challenges, which are mostly related to the limitations that preclude three-dimensional structural determinations of these inhibitors using "gold-standard" methods; perspectives on how to circumvent such limitations are presented. Potential applications of these SVMPIs in medicine are also highlighted.


Assuntos
Antídotos/uso terapêutico , Metaloendopeptidases/antagonistas & inibidores , Inibidores de Proteases/uso terapêutico , Proteínas de Répteis/antagonistas & inibidores , Mordeduras de Serpentes/tratamento farmacológico , Venenos de Serpentes/antagonistas & inibidores , Animais , Antídotos/história , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Metaloendopeptidases/química , Metaloendopeptidases/história , Metaloendopeptidases/metabolismo , Inibidores de Proteases/história , Conformação Proteica , Proteínas de Répteis/química , Proteínas de Répteis/história , Proteínas de Répteis/metabolismo , Mordeduras de Serpentes/enzimologia , Mordeduras de Serpentes/história , Venenos de Serpentes/química , Venenos de Serpentes/enzimologia , Venenos de Serpentes/história , Relação Estrutura-Atividade
19.
Toxins (Basel) ; 8(6)2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27294958

RESUMO

Snake venom metalloproteinases (SVMPs) are abundant in the venoms of vipers and rattlesnakes, playing important roles for the snake adaptation to different environments, and are related to most of the pathological effects of these venoms in human victims. The effectiveness of SVMPs is greatly due to their functional diversity, targeting important physiological proteins or receptors in different tissues and in the coagulation system. Functional diversity is often related to the genetic diversification of the snake venom. In this review, we discuss some published evidence that posit that processing and post-translational modifications are great contributors for the generation of functional diversity and for maintaining latency or inactivation of enzymes belonging to this relevant family of venom toxins.


Assuntos
Metaloproteases/química , Metaloproteases/genética , Processamento de Proteína Pós-Traducional , Venenos de Serpentes/enzimologia , Adaptação Biológica , Animais , Domínio Catalítico , Estabilidade Enzimática , Proteólise , Serpentes/metabolismo , Serpentes/fisiologia
20.
PLoS One ; 10(5): e0092091, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25955844

RESUMO

The complete sequence characterization of snake venom proteins by mass spectrometry is rather challenging due to the presence of multiple isoforms from different protein families. In the present study, we investigated the tryptic digest of the venom of the viperid snake Sistrurus catenatus edwardsii by a combined approach of liquid chromatography coupled to either electrospray (online) or MALDI (offline) mass spectrometry. These different ionization techniques proved to be complementary allowing the identification a great variety of isoforms of diverse snake venom protein families, as evidenced by the detection of the corresponding unique peptides. For example, ten out of eleven predicted isoforms of serine proteinases of the venom of S. c. edwardsii were distinguished using this approach. Moreover, snake venom protein families not encountered in a previous transcriptome study of the venom gland of this snake were identified. In essence, our results support the notion that complementary ionization techniques of mass spectrometry allow for the detection of even subtle sequence differences of snake venom proteins, which is fundamental for future structure-function relationship and possible drug design studies.


Assuntos
Proteínas de Répteis/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Venenos de Víboras/química , Viperidae , Sequência de Aminoácidos , Animais , Metaloendopeptidases/análise , Dados de Sequência Molecular , Proteômica/métodos , Alinhamento de Sequência , Serina Proteases/análise , Viperidae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA