Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biodivers Data J ; 12: e125348, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948133

RESUMO

Background: In the marine environment, knowledge of biodiversity remains incomplete for many taxa, requiring assessments to understand and monitor biodiversity loss. Environmental DNA (eDNA) metabarcoding is a powerful tool for monitoring marine biodiversity, as it enables several taxa to be characterised simultaneously in a single sample. However, the data generated by environmental DNA metabarcoding are often not easily reusable. Implementing FAIR principles and standards for eDNA-derived data can facilitate data-sharing within the scientific community. New information: This study focuses on the detection of marine vertebrate biodiversity using eDNA metabarcoding on the leeward coast of Guadeloupe, a known hotspot for marine biodiversity in the French West Indies. Occurrences and DNA-derived data are shared here using DarwinCore standards combined with MIMARKS standards.

2.
Ecol Evol ; 14(5): e11337, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38766310

RESUMO

Islands have been used as model systems to study ecological and evolutionary processes, and they provide an ideal set-up for validating new biodiversity monitoring methods. The application of environmental DNA metabarcoding for monitoring marine biodiversity requires an understanding of the spatial scale of the eDNA signal, which is best tested in island systems. Here, we investigated the variation in Actinopterygii and Elasmobranchii species composition recovered from eDNA metabarcoding along a gradient of distance-to-reef in four of the five French Scattered Islands in the Western Indian Ocean. We collected surface water samples at an increasing distance from reefs (0 m, 250 m, 500 m, 750 m). We used a metabarcoding protocol based on the 'teleo' primers to target marine reef fishes and classified taxa according to their habitat types (benthic or pelagic). We investigated the effect of distance-to-reef on ß diversity variation using generalised linear mixed models and estimated species-specific distance-to-reef effects using a model-based approach for community data. Environmental DNA metabarcoding analyses recovered distinct fish species compositions across the four inventoried islands and variations along the distance-to-reef gradient. The analysis of ß-diversity variation showed significant taxa turnover between the eDNA samples on and away from the reefs. In agreement with a spatially localised signal from eDNA, benthic species were distributed closer to the reef than pelagic ones. Our findings demonstrate that the combination of eDNA inventories and spatial modelling can provide insights into species habitat preferences related to distance-to-reef gradients at a small scale. As such, eDNA can not only recover large compositional differences among islands but also help understand habitat selection and distribution of marine species at a finer spatial scale.

3.
PLoS One ; 19(1): e0296310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165893

RESUMO

Information is scarce on how environmental and dispersal processes interact with biological features of the organisms, such as their habitat affinity, to influence patterns in biodiversity. We examined the role of habitat specialist vs. generalist species, and the spatial configuration, connectivity, and different environmental characteristics of river-floodplain habitats to get a more mechanistic understanding of alpha and beta diversity of fish metacommunities. We used environmental DNA metabarcoding to characterize species (taxa) richness and composition in two separate floodplains of the river Danube (Austria and Hungary) during two different hydrological conditions. Results showed that differences in the number of generalist and specialist species and their responses to connectivity and environmental gradients influenced patterns in alpha and beta diversity. Of the components of beta diversity, richness difference (nestedness) showed consistently higher values than replacement (turnover), mainly due to the decrease of specialist species along the connectivity gradient (i.e., from the mainstem to the most isolated oxbows). Variance in both alpha and beta diversity could be well predicted by a set of local and regional variables, despite high environmental variability, which characterizes river-floodplain ecosystems. Of these, the joint or shared variance fractions proved to be the most important, which indicates that the effects of local and regional processes cannot be unambiguously separated in these river-floodplain systems. Local scale environmental variables were more important determinants of both alpha and beta diversity in the low water period than in the high water period. These results indicate the differential role of local and regional processes in community organization during different hydrological conditions. Maintenance of both local and regional scale processes are thus important in the preservation of alpha and beta diversity of floodplain fish metacommunities, which should be considered by environmental management.


Assuntos
Biodiversidade , Ecossistema , Animais , Rios , Hidrologia , Peixes/genética , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA