Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Hered ; 115(2): 188-202, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38158823

RESUMO

Seascape genomics gives insight into the geographic and environmental factors shaping local adaptations. It improves the understanding of the potential effects of climate change, which is relevant to provide the basis for the international management of fishery resources. The pink abalone (Haliotis corrugata) is distributed from California, United States to Baja California Sur, Mexico, exposed to a latitudinal environmental gradient in the California Current System. Management of the pink abalone contrasts between Mexico and the United States; Mexico has an active fishery organized in four administrative areas, while the United States has kept the fishery in permanent closure since 1996. However, the impact of environmental factors on genetic variation along the species distribution remains unknown, and understanding this relationship is crucial for effective spatial management strategies. This study aims to investigate the neutral and adaptive genomic structure of H. corrugata. A total of 203 samples from 13 locations were processed using ddRADseq, and covering the species' distribution. Overall, 2,231 neutral, nine potentially adaptive and three genomic-environmental association loci were detected. The neutral structure identified two groups: 1) California, United States and 2) Baja California Peninsula, México. In addition, the adaptive structure analysis also detected two groups with genetic divergence observed at Punta Eugenia. Notably, the seawater temperature significantly correlated with the northern group (temperate) and the southern (warmer) group. This study is a valuable foundation for future research and conservation initiatives, emphasizing the importance of considering neutral and adaptive genetic factors when developing management strategies for marine species.


Assuntos
Gastrópodes , Animais , México , Genômica , Deriva Genética , Água do Mar
2.
Anim Reprod Sci ; 259: 107363, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931566

RESUMO

The totoaba (Totoaba macdonaldi) is an emblematic species endemic to the Gulf of California, which has been protected since the mid-70 s by Mexican and international laws. For the present study, 153 totoaba individuals were collected from 2011 to 2014, on which gonad histology analyses were carried out. We identified six ovarian phases and eleven oocyte subphases in the gonad development of females; in males, four development phases were identified. The totoaba is an iteroparous species based on the number of breeding opportunities. According to the organization of the ovary and the presence of oocyte subphases, ovarian dynamics can be considered asynchronous, as demonstrated by the multimodal distribution of oocyte diameter. The totoaba is a batch spawner that releases oocytes over several months. The reproductive period spans from February to May, with a reproductive peak in March. Likewise, the gonadosomatic index showed that the reproductive activity of totoaba peaked in March and April. The female:male sex ratio, although variable throughout the sampling period, yielded an overall value of 0.89:1, with non-significant differences between the number of females and males (P > 0.05). The length at first sexual maturity (L50%) was 1 354 mm TL for females and 1 299 mm TL for males. The average fecundity was 2 662 626 (standard error, s.e., 1 021 124) oocytes, and the average relative fecundity was 99 (s.e. 22) oocytes g-1 (ovary-free). The mean and maximum oocyte diameter showed a positive and non-significant (P > 0.05) relationship with the mean sea surface temperature.


Assuntos
Espécies em Perigo de Extinção , Perciformes , Animais , Feminino , Masculino , Biologia , Fertilidade , Reprodução
3.
Bull Environ Contam Toxicol ; 110(2): 42, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36651996

RESUMO

This study analyzed total mercury (THg), and selenium (Se) in edible tissues of white shrimp (Litopenaeus vannamei), blue shrimp (L. stylirostris) and brown shrimp (F. californiensis), from three states of the Northwest of Mexico in September and October 2017. Concentrations of THg and Se in the muscle were between 0.026 and 0.829 and 0.126-1.741 µg/g dry weight (dw), respectively. Significant differences were observed among Hg concentration of Sonora and Nayarit and among Se concentration of Sinaloa and Nayarit. In addition, the health risk assessment (HQ) in the three species of shrimp was between 0.550 and 0.607. All Se:Hg molar ratios were > 1 and positive HBVSe values that showed that shrimp from Northwest of Mexico does not represent a risk to human health.


Assuntos
Mercúrio , Penaeidae , Selênio , Poluentes Químicos da Água , Humanos , Animais , Mercúrio/análise , Selênio/toxicidade , Selênio/análise , México , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Medição de Risco , Monitoramento Ambiental
4.
Mitochondrial DNA A DNA Mapp Seq Anal ; 32(5-8): 195-201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37846725

RESUMO

The chilhuil sea catfish (Bagre panamensis) is an ecologically relevant species contributing to the structure, organization, and functioning of the ecosystems it inhabits. Also, it is an important artisanal fishery resource in the Mexican Pacific coast. This study aimed to determine the genetic diversity, population structure, and historical demography of B. panamensis in the Mexican Pacific. The mitochondrial DNA was amplified from two distinct regions, r16S and COI, resulting in an 1142 bp of the concatenated genes. Low genetic diversity levels were detected for r16S (H = 12; h = 0.131; π = 0.0003) and high genetic diversity levels for COI (H = 57; h = 0.9128; π = 0.0039) and the concatenated gene fragments (H = 62; h = 0.9307; π = 0.0023). Population structure analysis indicated 'panmixia' for B. panamensis along the Mexican Pacific. Furthermore, historical demographic analysis (Tajima's D, Fu's Fs, mismatch distribution, and Bayesian Skyline plot analyses) supported a population expansion scenario for the studied species.

5.
PeerJ ; 8: e9722, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879800

RESUMO

Effective fishery management strategies should be based on stock delimitation and knowledge of the spatial scale at which species are distributed. However, a mismatch often occurs between biological and management units of fishery resources. The green abalone (Haliotis fulgens) supports an important artisanal fishery in the west coast of the Baja California Peninsula (BCP), Mexico, which has shown a declining tendency despite the several management measures. Thus, the aim of this study was to characterize the spatial patterns of neutral genomic variation of green abalone along the BCP to test whether the genomic structure patterns support the current green abalone management areas. To test this hypothesis, a set of 2,170 putative neutral single nucleotide polymorphisms discovered by a double digest restriction-site associated DNA approach was used on 10 locations along the BCP. The results revealed a population structure with three putative groups: Guadalupe Island and northern and southern BCP locations. The contemporary gene flow might be explained by local oceanographic features, where it is bidirectional within the southern region but with a predominant southward flow from the northern region. These findings indicated that the administrative areas did not match the biological units of H. fulgens fishery; hence, the stock assessment and management areas should be revised.

6.
J Fish Biol ; 97(3): 882-894, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32598029

RESUMO

The almaco jack, Seriola rivoliana, is a circumtropical pelagic fish of importance both in commercial fisheries and in aquaculture. To understand levels of genetic diversity within and among populations in the wild, population genetic structure and the relative magnitude of migration were assessed using mtDNA sequence data and single nucleotide polymorphisms (SNPs) from individuals sampled from locations in the Pacific and Atlantic Oceans. A total of 25 variable sites of cytochrome c oxidase subunit 1 and 3678 neutral SNPs were recovered. Three genetic groups were identified, with both marker types distributed in different oceanic regions: Pacific-1 in central Pacific, Pacific-2 in eastern Pacific and Atlantic in western Atlantic. Nonetheless, the analysis of SNP identified a fourth population in the Pacific coast of Baja California Sur, Mexico (Pacific-3), whereas that of mtDNA did not. This mito-nuclear discordance is likely explained by a recently diverged Pacific-3 population. In addition, two mtDNA haplogroups were found within the western Atlantic, likely indicating that the species came into the Atlantic from the Indian Ocean with historical gene flow from the eastern Pacific. Relative gene flow among ocean basins was low with r m < 0.2, whereas in the eastern Pacific it was asymmetric and higher from south to north (r m > 0.79). The results reflect the importance of assessing genetic structure and gene flow of natural populations for the purposes of sustainable management.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Variação Genética , Perciformes/genética , Animais , DNA Mitocondrial/genética , Fluxo Gênico , Genética Populacional , México , Oceanos e Mares , Perciformes/classificação , Clima Tropical
7.
Artigo em Inglês | MEDLINE | ID: mdl-32554222

RESUMO

Fatty acid desaturases are key enzymes involved in unsaturated fatty acid biosynthesis, which insert double bonds at specific positions of fatty acids, playing a pivotal role in unsaturated fatty acid synthesis required for membrane lipid fluidity. The ∆5 and ∆6 desaturases are responsible for producing long chain-polyunsaturated fatty acids (LC-PUFA) through their precursors α-linolenic acid and linoleic acid in organisms lacking or with very low ability to synthesize LC-PUFA by themselves. Extensive studies of fatty acid desaturases are available in model organisms, such as humans and mouse; however, the diversity of these genes in the marine biodiversity is less known. This study performed an exhaustive analysis to identify the ∆5 and ∆6 desaturases in the available marine genomes in databases, as well as transcriptomes and EST databases, and their coding sequences were compared to the well-characterized ∆5 and ∆6 desaturases from humans. The FADS1 and FADS2 genetic structures are well conserved among all the organisms analyzed. A common amino acid pattern was identified to discriminate between ∆5 and ∆6 desaturases. The analysis of the conserved motif involved in catalysis showed that 20% of the desaturases, ∆5 and ∆6, have lost motifs required for catalysis. Additionally, bifunctional ∆5/∆6 desaturases were able to be identified by amino acid sequence patterns found in previously described enzymes. A revision of the expression profiles and functional activity on sequences in databases and scientific literature provided information regarding the function of these marine organism enzymes.


Assuntos
Ácidos Graxos Dessaturases/genética , Proteínas de Peixes/genética , Peixes/genética , Genômica , Transcriptoma , Sequência de Aminoácidos , Animais , Organismos Aquáticos/química , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Sequência Conservada , Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Dessaturases/química , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Humanos
8.
J Hered ; 107(6): 496-503, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27466386

RESUMO

Conservation of the evolutionary legacy of endangered species is a key component for long-term persistence. Totoaba is a long-lived fish endemic to the Gulf of California and is considered critically endangered. There is currently a debate concerning its conservation status and whether it can be used as a fishery resource. Unfortunately, basic information on biological and genetic population structure of the species is lacking. We sampled 313 individuals and employed 16 microsatellite loci and 3 mitochondrial DNA markers (16S, 547 pb; COI, 619 pb; control region, 650 pb) to assess population structure and demography of totoaba in the Gulf of California, with samples from locations that encompass nearly all of its recognized geographic distribution. We could not reject a hypothesis of panmixia for totoaba, using nuclear or mitochondrial markers. Demographic analysis of mtDNA suggests a sudden population expansion model. The results have important implications for totoaba conservation because poaching is a significant conservation challenge and could have additive negative effects over the single population of totoaba in the Gulf of California.


Assuntos
Espécies em Perigo de Extinção , Peixes/genética , Animais , Biodiversidade , California , Conservação dos Recursos Naturais , DNA Mitocondrial , Peixes/classificação , Variação Genética , Genética Populacional , Haplótipos , Repetições de Microssatélites , Filogenia
9.
Brief Funct Genomics ; 15(5): 352-7, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26995687

RESUMO

Fisheries genomics is an emerging field that advocates the application of genomic tools to address questions in fisheries management. Genomic approaches bring a new paradigm for fisheries management by making it possible to integrate adaptive diversity to understand fundamental aspects of fisheries resources. Hence, this review is focused on the relevance of genomic approaches to solve fisheries-specific questions. Particularly the detection of adaptive diversity (outlier loci) provides unprecedented opportunity to understand bio-complexity, increased power to trace processed sample origin to allow enforcement and the potential to understand the genetic basis of micro-evolutionary effects of fisheries-induced evolution and climate change. The understanding of adaptive diversity patterns will be the cornerstone of the future links between fisheries and genomics. These studies will help stakeholders anticipate the potential effects of fishing or climate change on the resilience of fisheries stocks; consequently, in the near future, fisheries sciences might integrate evolutionary principles with fisheries management.


Assuntos
Biodiversidade , Pesqueiros , Peixes/genética , Marcadores Genéticos , Genética Populacional/métodos , Genômica/métodos , Animais , Peixes/crescimento & desenvolvimento , Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA