Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Neurobiol ; 56(10): 7003-7021, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30968343

RESUMO

Multiple systems atrophy (MSA) is a rare neurodegenerative disorder characterized by the accumulation of α-synuclein in glial cells and neurodegeneration in the striatum, substantia nigra, and cerebellum. Aberrant miRNA regulation has been associated with neurodegeneration, including alterations of specific miRNAs in brain tissue, serum, and cerebrospinal fluid from MSA patients. Still, a causal link between deregulation of miRNA networks and pathological changes in the transcriptome remains elusive. We profiled ~ 800 miRNAs in the striatum of MSA patients in comparison to healthy individuals to identify specific miRNAs altered in MSA. In addition, we performed a parallel screening of 700 transcripts associated with neurodegeneration to determine the impact of miRNA deregulation on the transcriptome. We identified 60 miRNAs with abnormal levels in MSA brains that are involved in extracellular matrix receptor interactions, prion disease, inflammation, ubiquitin-mediated proteolysis, and addiction pathways. Using the correlation between miRNA expression and the abundance of their known targets, miR-124-3p, miR-19a-3p, miR-27b-3p, and miR-29c-3p were identified as key regulators altered in MSA, mainly contributing to neuroinflammation. Finally, our study also uncovered a potential link between Alzheimer's disease (AD) and MSA pathologies that involves miRNAs and deregulation of BACE1. Our results provide a comprehensive appraisal of miRNA alterations in MSA and their effect on the striatal transcriptome, supporting that aberrant miRNA expression is highly correlated with changes in gene transcription associated with MSA neuropathology, in particular those driving inflammation, disrupting myelination, and potentially impacting α-synuclein accumulation via deregulation of autophagy and prion mechanisms.


Assuntos
Corpo Estriado/patologia , Redes Reguladoras de Genes , Inflamação/genética , MicroRNAs/genética , Atrofia de Múltiplos Sistemas/genética , RNA Mensageiro/genética , Autofagia/genética , Transporte Biológico , Regulação da Expressão Gênica , Humanos , Inflamação/patologia , MicroRNAs/metabolismo , Modelos Biológicos , Bainha de Mielina/genética , Degeneração Neural/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
2.
J Neurochem ; 147(6): 784-802, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30152135

RESUMO

Neuroinflammation is a common pathological correlate of HIV-associated neurocognitive disorders (HAND) in individuals on antiretroviral therapy (ART). Triggering receptor expressed on myeloid cells 2 (TREM2) regulates neuroinflammation, clears extracellular Amyloid (A)-ß, surveys for damaged neurons, and orchestrates microglial differentiation. TREM2 has not been studied in HIV+ brain tissues. In this retrospective study, we investigated TREM2 expression levels and localization to microglia, Aß protein levels, and tumor necrosis factor (TNF)-α transcript levels in the frontal cortices of 52 HIV+ decedents. All donors had been on ART; 14 were cognitively normal (CN), 17 had an asymptomatic neurocognitive impairment (ANI), and 21 had a minor neurocognitive disorder (MND). Total TREM2 protein levels were increased in the soluble and decreased in the membrane-enriched fractions of MND brain tissues compared to CN; however, brains from MND Hispanics showed the most robust alterations in TREM2 as well as significantly increased TNF-α mRNA and Aß levels when compared to CN Hispanics. Significant alterations in the expression of total TREM2 protein and transcripts for TNF-α were not observed in non-Hispanics, despite higher levels of Aß in the non-Hispanic CN group compared to the non-Hispanic MND groups. These findings show that decreased and increased TREM2 in membrane-bound fractions and in soluble-enriched fractions, respectively, is associated with increased Aß and neuroinflammation in this cohort of HIV+ brains, particularly those identifying as Hispanics. These findings suggest a role for TREM2 in the brain of HIV+ individuals may deserve more investigation as a biomarker for HAND and as a possible therapeutic target. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Complexo AIDS Demência/metabolismo , Complexo AIDS Demência/psicologia , Peptídeos beta-Amiloides/metabolismo , Terapia Antirretroviral de Alta Atividade , Química Encefálica , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/psicologia , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Complexo AIDS Demência/tratamento farmacológico , Adulto , Peptídeos beta-Amiloides/análise , Biomarcadores , Etnicidade , Feminino , Soropositividade para HIV , Hispânico ou Latino , Humanos , Masculino , Glicoproteínas de Membrana/análise , Microglia/metabolismo , Pessoa de Meia-Idade , Testes Neuropsicológicos , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , Receptores Imunológicos/análise , Estudos Retrospectivos , Fator de Necrose Tumoral alfa/metabolismo
3.
Acta Neuropathol ; 135(1): 33-47, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29058121

RESUMO

Multiple system atrophy (MSA) is a rapidly progressing fatal synucleinopathy of the aging population characterized by parkinsonism, dysautonomia, and in some cases ataxia. Unlike other synucleinopathies, in this disorder the synaptic protein, α-synuclein (α-syn), predominantly accumulates in oligodendroglial cells (and to some extent in neurons), leading to maturation defects of oligodendrocytes, demyelination, and neurodegeneration. The mechanisms through which α-syn deposits occur in oligodendrocytes and neurons in MSA are not completely clear. While some studies suggest that α-syn might transfer from neurons to glial cells, others propose that α-syn might be aberrantly overexpressed by oligodendroglial cells. A number of in vivo models have been developed, including transgenic mice overexpressing α-syn under oligodendroglial promoters (e.g.: MBP, PLP, and CNP). Other models have been recently developed either by injecting synthetic α-syn fibrils or brain homogenates from patients with MSA into wild-type mice or by using viral vectors expressing α-syn under the MBP promoter in rats and non-human primates. Each of these models reproduces some of the neuropathological and functional aspects of MSA; however, none of them fully replicate the spectrum of MSA. Understanding better the mechanisms of how α-syn accumulates in oligodendrocytes and neurons will help in developing better models that recapitulate various pathogenic aspects of MSA in combination with translatable biomarkers of early stages of the disease that are necessary to devise disease-modifying therapeutics for MSA.


Assuntos
Atrofia de Múltiplos Sistemas/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Atrofia de Múltiplos Sistemas/patologia
4.
Auton Neurosci ; 211: 1-6, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29169744

RESUMO

Multiple system atrophy (MSA) is a fatal neurodegenerative disorder characterized by the abnormal accumulation of toxic forms of the synaptic protein alpha-synuclein (α-syn) within oligodendrocytes and neurons. The presence of α-syn within oligodendrocytes in the form of glial cytoplasmic inclusions is the diagnostic hallmark of MSA. However, it has been postulated that α-syn is produced in neurons and propagates to oligodendrocytes, where unknown mechanisms lead to its accumulation. The presence of α-syn within neurons in MSA has not been so extensively studied, but it may shed light into neuropathological mechanisms leading to oligodendroglial accumulation. Here we summarize the principal neuropathological events of MSA, and discuss how a deeper knowledge of these mechanisms may help develop effective therapies targeting α-syn accumulation and spreading.


Assuntos
Atrofia de Múltiplos Sistemas/metabolismo , Neurônios/citologia , Oligodendroglia/citologia , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Atrofia de Múltiplos Sistemas/terapia , Neuropatologia
5.
Front Mol Neurosci ; 10: 329, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29089869

RESUMO

Synucleinopathies, neurodegenerative disorders with alpha-synuclein (α-syn) accumulation, are the second leading cause of neurodegeneration in the elderly, however no effective disease-modifying alternatives exist for these diseases. Multiple system atrophy (MSA) is a fatal synucleinopathy characterized by the accumulation of toxic aggregates of α-syn within oligodendroglial cells, leading to demyelination and neurodegeneration, and the reduction of this accumulation might halt the fast progression of MSA. In this sense, the involvement of microRNAs (miRNAs) in synucleinopathies is yet poorly understood, and the potential of manipulating miRNA levels as a therapeutic tool is underexplored. In this study, we analyzed the levels of miRNAs that regulate the expression of autophagy genes in MSA cases, and investigated the mechanistic correlates of miRNA dysregulation in in vitro models of synucleinopathy. We found that microRNA-101 (miR-101) was significantly increased in the striatum of MSA patients, together with a reduction in the expression of its predicted target gene RAB5A. Overexpression of miR-101 in oligodendroglial cell cultures resulted in a significant increase in α-syn accumulation, along with autophagy deficits. Opposite results were observed upon expression of an antisense construct targeting miR-101. Stereotaxic delivery of a lentiviral construct expressing anti-miR-101 into the striatum of the MBP-α-syn transgenic (tg) mouse model of MSA resulted in reduced oligodendroglial α-syn accumulation and improved autophagy. These results suggest that miRNA dysregulation contributes to MSA pathology, with miR-101 alterations potentially mediating autophagy impairments. Therefore, therapies targeting miR-101 may represent promising approaches for MSA and related neuropathologies with autophagy dysfunction.

6.
Acta Neuropathol Commun ; 5(1): 7, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28086964

RESUMO

Neurodegenerative disorders such as Parkinson's Disease (PD), PD dementia (PDD) and Dementia with Lewy bodies (DLB) are characterized by progressive accumulation of α-synuclein (α-syn) in neurons. Recent studies have proposed that neuron-to-neuron propagation of α-syn plays a role in the pathogenesis of these disorders. We have previously shown that antibodies against the C-terminus of α-syn reduce the intra-neuronal accumulation of α-syn and related deficits in transgenic models of synucleinopathy, probably by abrogating the axonal transport and accumulation of α-syn in in vivo models. Here, we assessed the effect of passive immunization against α-syn in a new mouse model of axonal transport and accumulation of α-syn. For these purpose, non-transgenic, α-syn knock-out and mThy1-α-syn tg (line 61) mice received unilateral intra-cerebral injections with a lentiviral (LV)-α-syn vector construct followed by systemic administration of the monoclonal antibody 1H7 (recognizes amino acids 91-99) or control IgG for 3 months. Cerebral α-syn accumulation and axonopathy was assessed by immunohistochemistry and effects on behavior were assessed by Morris water maze. Unilateral LV-α-syn injection resulted in axonal propagation of α-syn in the contra-lateral site with subsequent behavioral deficits and axonal degeneration. Passive immunization with 1H7 antibody reduced the axonal accumulation of α-syn in the contra-lateral side and ameliorated the behavioral deficits. Together this study supports the notion that immunotherapy might improve the deficits in models of synucleinopathy by reducing the axonal propagation and accumulation of α-syn. This represents a potential new mode of action through which α-syn immunization might work.


Assuntos
Axônios/patologia , Encéfalo/patologia , Imunização Passiva , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , alfa-Sinucleína/imunologia , alfa-Sinucleína/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Transporte Axonal , Axônios/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Lateralidade Funcional , Vetores Genéticos , Humanos , Lentivirus , Aprendizagem em Labirinto/fisiologia , Camundongos Transgênicos , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/psicologia , alfa-Sinucleína/deficiência , alfa-Sinucleína/genética
7.
Acta Neuropathol Commun ; 5(1): 2, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28057080

RESUMO

Multiple system atrophy (MSA) is a fatal neurodegenerative disorder characterized by the pathological accumulation of alpha-synuclein (α-syn) in oligodendrocytes. Therapeutic efforts to stop or delay the progression of MSA have yielded suboptimal results in clinical trials, and there are no efficient treatments currently available for MSA patients. We hypothesize that combining therapies targeting different aspects of the disease may lead to better clinical outcomes. To test this hypothesis, we combined the use of a single-chain antibody targeting α-syn modified for improved central nervous system penetration (CD5-D5) with an unconventional anti-inflammatory treatment (lenalidomide) in the myelin basic protein (MBP)-α-syn transgenic mouse model of MSA. While the use of either CD5-D5 or lenalidomide alone had positive effects on neuroinflammation and/or α-syn accumulation in this mouse model of MSA, the combination of both approaches yielded better results than each single treatment. The combined treatment reduced astrogliosis, microgliosis, soluble and aggregated α-syn levels, and partially improved behavioral deficits in MBP-α-syn transgenic mice. These effects were associated with an activation of the Akt signaling pathway, which may mediate cytoprotective effects downstream tumor necrosis factor alpha (TNFα). These results suggest that a strategic combination of treatments may improve the therapeutic outcome in trials for MSA and related neurodegenerative disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Imunoterapia , Atrofia de Múltiplos Sistemas/terapia , Anticorpos de Cadeia Única/farmacologia , Talidomida/análogos & derivados , alfa-Sinucleína/imunologia , Animais , Modelos Animais de Doenças , Gliose/imunologia , Gliose/patologia , Gliose/terapia , Humanos , Lenalidomida , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/imunologia , Atrofia de Múltiplos Sistemas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Talidomida/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
8.
Ann Clin Transl Neurol ; 3(8): 588-606, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27606342

RESUMO

OBJECTIVE: Progressive accumulation of α-synuclein (α-syn) has been associated with Parkinson's disease (PD) and Dementia with Lewy body (DLB). The mechanisms through which α-syn leads to neurodegeneration are not completely clear; however, the formation of various oligomeric species have been proposed to play a role. Antibody therapy has shown effectiveness at reducing α-syn accumulation in the central nervous system (CNS); however, most of these studies have been conducted utilizing antibodies that recognize both monomeric and higher molecular weight α-syn. In this context, the main objective of this study was to investigate the efficacy of immunotherapy with single-chain antibodies (scFVs) against specific conformational forms of α-syn fused to a novel brain penetrating sequence. METHOD: We screened various scFVs against α-syn expressed from lentiviral vectors by intracerebral injections in an α-syn tg model. The most effective scFVs were fused to the cell-penetrating peptide penetratin to enhance transport across the blood-brain barrier, and lentiviral vectors were constructed and tested for efficacy following systemic delivery intraperitoneal into α-syn tg mice. RESULT: Two scFVs (D5 and 10H) selectively targeted different α-syn oligomers and reduced the accumulation of α-syn and ameliorated functional deficits when delivered late in disease development; however, only one of the antibodies (D5) was also effective when delivered early in disease development. These scFVs were also utilized in an enzyme-linked immunosorbent assay (ELISA) assay to monitor the effects of immunotherapy on α-syn oligomers in brain and plasma. INTERPRETATION: The design and targeting of antibodies for specific species of α-syn oligomers is crucial for therapeutic immunotherapy and might be of relevance for the treatment of Lewy body disease.

9.
Sci Rep ; 6: 30891, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27488222

RESUMO

A single amyloidogenic protein is implicated in multiple neurological diseases and capable of generating a number of aggregate "strains" with distinct structures. Among the amyloidogenic proteins, α-synuclein generates multiple patterns of proteinopathies in a group of diseases, such as Parkinson disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). However, the link between specific conformations and distinct pathologies, the key concept of the strain hypothesis, remains elusive. Here we show that in the presence of bacterial endotoxin, lipopolysaccharide (LPS), α-synuclein generated a self-renewable, structurally distinct fibril strain that consistently induced specific patterns of synucleinopathies in mice. These results suggest that amyloid fibrils with self-renewable structures cause distinct types of proteinopathies despite the identical primary structure and that exposure to exogenous pathogens may contribute to the diversity of synucleinopathies.


Assuntos
Amiloide/metabolismo , Doença por Corpos de Lewy/patologia , Lipopolissacarídeos/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Doença de Parkinson/patologia , Agregados Proteicos/fisiologia , alfa-Sinucleína/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia
10.
Acta Neuropathol ; 132(1): 59-75, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27059609

RESUMO

Multiple system atrophy (MSA) is a rare atypical parkinsonian disorder characterized by a rapidly progressing clinical course and at present without any efficient therapy. Neuropathologically, myelin loss and neurodegeneration are associated with α-synuclein accumulation in oligodendrocytes, but underlying pathomechanisms are poorly understood. Here, we analyzed the impact of oligodendrocytic α-synuclein on the formation of myelin sheaths to define a potential interventional target for MSA. Post-mortem analyses of MSA patients and controls were performed to quantify myelin and oligodendrocyte numbers. As pre-clinical models, we used transgenic MSA mice, a myelinating stem cell-derived oligodendrocyte-neuron co-culture, and primary oligodendrocytes to determine functional consequences of oligodendrocytic α-synuclein overexpression on myelination. We detected myelin loss accompanied by preserved or even increased numbers of oligodendrocytes in post-mortem MSA brains or transgenic mouse forebrains, respectively, indicating an oligodendrocytic dysfunction in myelin formation. Corroborating this observation, overexpression of α-synuclein in primary and stem cell-derived oligodendrocytes severely impaired myelin formation, defining a novel α-synuclein-linked pathomechanism in MSA. We used the pro-myelinating activity of the muscarinic acetylcholine receptor antagonist benztropine to analyze the reversibility of the myelination deficit. Transcriptome profiling of primary pre-myelinating oligodendrocytes demonstrated that benztropine readjusts myelination-related processes such as cholesterol and membrane biogenesis, being compromised by oligodendrocytic α-synuclein. Additionally, benztropine restored the α-synuclein-induced myelination deficit of stem cell-derived oligodendrocytes. Strikingly, benztropine also ameliorated the myelin deficit in transgenic MSA mice, resulting in a prevention of neuronal cell loss. In conclusion, this study defines the α-synuclein-induced myelination deficit as a novel and crucial pathomechanism in MSA. Importantly, the reversible nature of this oligodendrocytic dysfunction opens a novel avenue for an intervention in MSA.


Assuntos
Antiparkinsonianos/farmacologia , Benzotropina/farmacologia , Atrofia de Múltiplos Sistemas/tratamento farmacológico , Atrofia de Múltiplos Sistemas/metabolismo , alfa-Sinucleína/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Morte Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Gliose/metabolismo , Gliose/patologia , Gliose/prevenção & controle , Masculino , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Atrofia de Múltiplos Sistemas/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Ratos Wistar , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/patologia , Transcriptoma/efeitos dos fármacos , alfa-Sinucleína/genética
11.
J Neurochem ; 139 Suppl 1: 346-352, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26749150

RESUMO

The lack of effective therapies for neurodegenerative disorders is one of the most relevant challenges of this century, considering that, as the global population ages, the incidence of these type of diseases is quickly on the rise. Among these disorders, synucleinopathies, which are characterized by the abnormal accumulation and spreading of the synaptic protein alpha-synuclein in the brain, already constitute the second leading cause of parkinsonism and dementia in the elderly population. Disorders with alpha-synuclein accumulation include Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. Numerous therapeutic alternatives for synucleinopathies are being tested in pre-clinical models and in the clinic; however, only palliative treatments addressing the dopaminergic deficits are approved to date, and no disease-modifying options are available yet. In this article, we provide a brief overview of therapeutic approaches currently being explored for synucleinopathies, and suggest possible explanations to the clinical trials outcomes. Finally, we propose that a deeper understanding of the pathophysiology of synucleinopathies, together with a combination of therapies tailored to each disease stage, may lead to better therapeutic outcomes in synucleinopathy patients. Synucleinopathies, neurodegenerative disorders characterized by the abnormal accumulation of the protein alpha-synuclein, constitute the second leading cause of parkinsonism and dementia in the elderly population, however, no disease-modifying options are available yet. In this review, we summarize the therapeutic approaches currently being explored for synucleinopathies, suggest possible explanations to the clinical outcomes, and propose areas of further therapeutic improvement. This article is part of a special issue on Parkinson disease.


Assuntos
Demência/metabolismo , Demência/terapia , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , alfa-Sinucleína/metabolismo , Animais , Ensaios Clínicos como Assunto/métodos , Demência/diagnóstico , Terapia Genética/métodos , Terapia Genética/tendências , Humanos , Doença por Corpos de Lewy/diagnóstico , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/terapia , Atrofia de Múltiplos Sistemas/diagnóstico , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/terapia , Doença de Parkinson/diagnóstico , Transplante de Células-Tronco/métodos , Transplante de Células-Tronco/tendências , alfa-Sinucleína/antagonistas & inibidores
12.
Neurotherapeutics ; 13(1): 179-89, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26494242

RESUMO

Disease-modifying alternatives are sorely needed for the treatment of neurodegenerative disorders, a group of diseases that afflict approximately 50 million Americans annually. Immunotherapy is one of the most developed approaches in this direction. Vaccination against amyloid-ß, α-synuclein, or tau has been extensively explored, specially as the discovery that these proteins may propagate cell-to-cell and be accessible to antibodies when embedded into the plasma membrane or in the extracellular space. Likewise, the use of passive immunization approaches with specific antibodies against abnormal conformations of these proteins has also yielded promising results. The clinical development of immunotherapies for Alzheimer's disease, Parkinson's disease, frontotemporal dementia, dementia with Lewy bodies, and other neurodegenerative disorders is a field in constant evolution. Results to date suggest that immunotherapy is a promising therapeutic approach for neurodegenerative diseases that progress with the accumulation and prion-like propagation of toxic protein aggregates. Here we provide an overview of the most novel and relevant immunotherapeutic advances targeting amyloid-ß in Alzheimer's disease, α-synuclein in Alzheimer's disease and Parkinson's disease, and tau in Alzheimer's disease and frontotemporal dementia.


Assuntos
Peptídeos beta-Amiloides/imunologia , Imunoterapia/métodos , Doenças Neurodegenerativas/terapia , alfa-Sinucleína/imunologia , Proteínas tau/imunologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Humanos , Doenças Neurodegenerativas/imunologia , Doença de Parkinson/imunologia , Doença de Parkinson/terapia , alfa-Sinucleína/efeitos dos fármacos , Proteínas tau/efeitos dos fármacos
13.
Mov Disord ; 31(2): 225-34, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26388203

RESUMO

Currently there are no disease-modifying alternatives for the treatment of most neurodegenerative disorders. The available therapies for diseases such as Parkinson's disease (PD), PD dementia (PDD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), in which the protein alpha-synuclein (α-Syn) accumulates within neurons and glial cells with toxic consequences, are focused on managing the disease symptoms. However, using strategic drug combinations and/or multi-target drugs might increase the treatment efficiency when compared with monotherapies. Synucleinopathies are complex disorders that progress through several stages, and toxic α-Syn aggregates exhibit prion-like behavior spreading from cell to cell. Therefore, it follows that these neurodegenerative disorders might require equally complex therapeutic approaches to obtain significant and long-lasting results. Hypothetically, therapies aimed at reducing α-Syn accumulation and cell-to-cell transfer, such as immunotherapy against α-Syn, could be combined with agents that reduce neuroinflammation with potential synergistic outcomes. Here we review the current evidence supporting this type of approach, suggesting that such rational therapy combinations, together with the use of multi-target drugs, may hold promise as the next logical step for the treatment of synucleinopathies.


Assuntos
Terapia Combinada/métodos , Imunoterapia/métodos , Doença por Corpos de Lewy/terapia , Atrofia de Múltiplos Sistemas/terapia , Doença de Parkinson/terapia , alfa-Sinucleína/efeitos dos fármacos , alfa-Sinucleína/imunologia , Animais , Humanos , Doença por Corpos de Lewy/tratamento farmacológico , Atrofia de Múltiplos Sistemas/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico
14.
Mol Neurodegener ; 10: 48, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26394760

RESUMO

BACKGROUND: Multiple system atrophy (MSA) is a progressive, neurodegenerative disease characterized by parkinsonism, resistance to dopamine therapy, ataxia, autonomic dysfunction, and pathological accumulation of α-synuclein (α-syn) in oligodendrocytes. Neurosin (kallikrein-6) is a serine protease capable of cleaving α-syn in the CNS, and we have previously shown that lentiviral (LV) vector delivery of neurosin into the brain of a mouse model of dementia with Lewy body/ Parkinson's disease reduces the accumulation of α-syn and improves neuronal synaptic integrity. RESULTS: In this study, we investigated the ability of a modified, systemically delivered neurosin to reduce the levels of α-syn in oligodendrocytes and reduce the cell-to-cell spread of α-syn to glial cells in a mouse model of MSA (MBP-α-syn). We engineered a viral vector that expresses a neurosin genetically modified for increased half-life (R80Q mutation) that also contains a brain-targeting sequence (apoB) for delivery into the CNS. Peripheral administration of the LV-neurosin-apoB to the MBP-α-syn tg model resulted in accumulation of neurosin-apoB in the CNS, reduced accumulation of α-syn in oligodendrocytes and astrocytes, improved myelin sheath formation in the corpus callosum and behavioral improvements. CONCLUSION: Thus, the modified, brain-targeted neurosin may warrant further investigation as potential therapy for MSA.


Assuntos
Calicreínas/metabolismo , Atrofia de Múltiplos Sistemas/metabolismo , Oligodendroglia/metabolismo , alfa-Sinucleína/metabolismo , Animais , Astrócitos/metabolismo , Comportamento Animal , Células Cultivadas , Modelos Animais de Doenças , Camundongos , Atrofia de Múltiplos Sistemas/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia
15.
J Neuroinflammation ; 12: 93, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25966683

RESUMO

BACKGROUND: Parkinson's disease (PD) is one of the most common causes of dementia and motor deficits in the elderly. PD is characterized by the abnormal accumulation of the synaptic protein alpha-synuclein (α-syn) and degeneration of dopaminergic neurons in substantia nigra, which leads to neurodegeneration and neuroinflammation. Currently, there are no disease modifying alternatives for PD; however, targeting neuroinflammation might be a viable option for reducing motor deficits and neurodegeneration. Lenalidomide is a thalidomide derivative designed for reduced toxicity and increased immunomodulatory properties. Lenalidomide has shown protective effects in an animal model of amyotrophic lateral sclerosis, and its mechanism of action involves modulation of cytokine production and inhibition of NF-κB signaling. METHODS: In order to assess the effect of lenalidomide in an animal model of PD, mThy1-α-syn transgenic mice were treated with lenalidomide or the parent molecule thalidomide at 100 mg/kg for 4 weeks. RESULTS: Lenalidomide reduced motor behavioral deficits and ameliorated dopaminergic fiber loss in the striatum. This protective action was accompanied by a reduction in microgliosis both in striatum and hippocampus. Central expression of pro-inflammatory cytokines was diminished in lenalidomide-treated transgenic animals, together with reduction in NF-κB activation. CONCLUSION: These results support the therapeutic potential of lenalidomide for reducing maladaptive neuroinflammation in PD and related neuropathologies.


Assuntos
Fatores Imunológicos/uso terapêutico , Transtornos Mentais , Microglia/efeitos dos fármacos , Doença de Parkinson/complicações , Doença de Parkinson/genética , Talidomida/análogos & derivados , Análise de Variância , Animais , Linhagem Celular Transformada , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Fatores Imunológicos/farmacologia , Lenalidomida , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/etiologia , Transtornos Mentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Talidomida/farmacologia , Talidomida/uso terapêutico , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
16.
Mol Neurodegener ; 10: 10, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25886309

RESUMO

BACKGROUND: Multiple system atrophy (MSA) is a neurodegenerative disease characterized by parkinsonism, ataxia and dysautonomia. Histopathologically, the hallmark of MSA is the abnormal accumulation of alpha-synuclein (α-syn) within oligodendroglial cells, leading to neuroinflammation, demyelination and neuronal death. Currently, there is no disease-modifying treatment for MSA. In this sense, we have previously shown that next-generation active vaccination technology with short peptides, AFFITOPEs®, was effective in two transgenic models of synucleinopathies at reducing behavioral deficits, α-syn accumulation and inflammation. RESULTS: In this manuscript, we used the most effective AFFITOPE® (AFF 1) for immunizing MBP-α-syn transgenic mice, a model of MSA that expresses α-syn in oligodendrocytes. Vaccination with AFF 1 resulted in the production of specific anti-α-syn antibodies that crossed into the central nervous system and recognized α-syn aggregates within glial cells. Active vaccination with AFF 1 resulted in decreased accumulation of α-syn, reduced demyelination in neocortex, striatum and corpus callosum, and reduced neurodegeneration. Clearance of α-syn involved activation of microglia and reduced spreading of α-syn to astroglial cells. CONCLUSIONS: This study further validates the efficacy of vaccination with AFFITOPEs® for ameliorating the neurodegenerative pathology in synucleinopathies.


Assuntos
Doenças Desmielinizantes/prevenção & controle , Atrofia de Múltiplos Sistemas/patologia , Atrofia de Múltiplos Sistemas/prevenção & controle , Transtornos Parkinsonianos/patologia , alfa-Sinucleína/imunologia , Animais , Astrócitos/citologia , Astrócitos/imunologia , Astrócitos/metabolismo , Doenças Desmielinizantes/imunologia , Modelos Animais de Doenças , Camundongos Transgênicos , Microglia/citologia , Microglia/imunologia , Atrofia de Múltiplos Sistemas/imunologia , Neurônios/citologia , Neurônios/imunologia , Oligodendroglia/citologia , Oligodendroglia/imunologia , Transtornos Parkinsonianos/imunologia , Vacinação/métodos
17.
J Neurosci ; 34(28): 9441-54, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25009275

RESUMO

Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are common neurodegenerative disorders of the aging population, characterized by progressive and abnormal accumulation of α-synuclein (α-syn). Recent studies have shown that C-terminus (CT) truncation and propagation of α-syn play a role in the pathogenesis of PD/DLB. Therefore, we explored the effect of passive immunization against the CT of α-syn in the mThy1-α-syn transgenic (tg) mouse model, which resembles the striato-nigral and motor deficits of PD. Mice were immunized with the new monoclonal antibodies 1H7, 5C1, or 5D12, all directed against the CT of α-syn. CT α-syn antibodies attenuated synaptic and axonal pathology, reduced the accumulation of CT-truncated α-syn (CT-α-syn) in axons, rescued the loss of tyrosine hydroxylase fibers in striatum, and improved motor and memory deficits. Among them, 1H7 and 5C1 were most effective at decreasing levels of CT-α-syn and higher-molecular-weight aggregates. Furthermore, in vitro studies showed that preincubation of recombinant α-syn with 1H7 and 5C1 prevented CT cleavage of α-syn. In a cell-based system, CT antibodies reduced cell-to-cell propagation of full-length α-syn, but not of the CT-α-syn that lacked the 118-126 aa recognition site needed for antibody binding. Furthermore, the results obtained after lentiviral expression of α-syn suggest that antibodies might be blocking the extracellular truncation of α-syn by calpain-1. Together, these results demonstrate that antibodies against the CT of α-syn reduce levels of CT-truncated fragments of the protein and its propagation, thus ameliorating PD-like pathology and improving behavioral and motor functions in a mouse model of this disease.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Encéfalo/imunologia , Transtornos dos Movimentos/imunologia , Transtornos dos Movimentos/terapia , Transtornos Parkinsonianos/imunologia , Transtornos Parkinsonianos/terapia , alfa-Sinucleína/imunologia , Animais , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Imunoterapia/métodos , Camundongos , Camundongos Transgênicos , Distribuição Tecidual , Resultado do Tratamento
18.
Acta Neuropathol ; 127(6): 861-79, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24525765

RESUMO

Immunotherapeutic approaches are currently in the spotlight for their potential as disease-modifying treatments for neurodegenerative disorders. The discovery that α-synuclein (α-syn) can transmit from cell to cell in a prion-like fashion suggests that immunization might be a viable option for the treatment of synucleinopathies. This possibility has been bolstered by the development of next-generation active vaccination technology with short peptides-AFFITOPEs(®) (AFF)- that do not elicit an α-syn-specific T cell response. This approach allows for the production of long term, sustained, more specific, non-cross reacting antibodies suitable for the treatment of synucleinopathies, such as Parkinson's disease (PD). In this context, we screened a large library of peptides that mimic the C-terminus region of α-syn and discovered a novel set of AFF that identified α-syn oligomers. Next, the peptide that elicited the most specific response against α-syn (AFF 1) was selected for immunizing two different transgenic (tg) mouse models of PD and Dementia with Lewy bodies, the PDGF- and the mThy1-α-syn tg mice. Vaccination with AFF 1 resulted in high antibody titers in CSF and plasma, which crossed into the CNS and recognized α-syn aggregates. Active vaccination with AFF 1 resulted in decreased accumulation of α-syn oligomers in axons and synapses, accompanied by reduced degeneration of TH fibers in the caudo-putamen nucleus and by improvements in motor and memory deficits in both in vivo models. Clearance of α-syn involved activation of microglia and increased anti-inflammatory cytokine expression, further supporting the efficacy of this novel active vaccination approach for synucleinopathies.


Assuntos
Doença por Corpos de Lewy/terapia , Doença de Parkinson/terapia , Vacinação/métodos , Animais , Anticorpos/sangue , Anticorpos/líquido cefalorraquidiano , Axônios/patologia , Axônios/fisiologia , Núcleo Caudado/patologia , Núcleo Caudado/fisiopatologia , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Humanos , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/fisiopatologia , Transtornos da Memória/patologia , Transtornos da Memória/fisiopatologia , Transtornos da Memória/terapia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Microglia/fisiologia , Atividade Motora/fisiologia , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Degeneração Neural/terapia , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Putamen/patologia , Putamen/fisiopatologia , Sinapses/patologia , Sinapses/fisiologia , Linfócitos T/patologia , Linfócitos T/fisiologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
19.
Glia ; 62(2): 317-37, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24310907

RESUMO

Multiple system atrophy (MSA) is a neurodegenerative disease characterized by the pathological accumulation of alpha-synuclein (α-syn) within oligodendroglial cells. This accumulation is accompanied by neuroinflammation with astrogliosis and microgliosis, that leads to neuronal death and subsequent parkinsonism and dysautonomia. Antidepressants have been explored as neuroprotective agents as they normalize neurotrophic factor levels, increase neurogenesis and reduce neurodegeneration, but their anti-inflammatory properties have not been fully characterized. We analyzed the anti-inflammatory profiles of three different antidepressants (fluoxetine, olanzapine and amitriptyline) in the MBP1-hα-syn transgenic (tg) mouse model of MSA. We observed that antidepressant treatment decreased the number of α-syn-positive cells in the basal ganglia of 11-month-old tg animals. This reduction was accompanied with a similar decrease in the colocalization of α-syn with astrocyte markers in this brain structure. Consistent with these results, antidepressants reduced astrogliosis in the hippocampus and basal ganglia of the MBP1-hα-syn tg mice, and modulated the expression levels of key cytokines that were dysregulated in the tg mouse model, such as IL-1ß. In vitro experiments in the astroglial cell line C6 confirmed that antidepressants inhibited NF-κB translocation to the nucleus and reduced IL-1ß protein levels. We conclude that the anti-inflammatory properties of antidepressants in the MBP1-hα-syn tg mouse model of MSA might be related to their ability to inhibit α-syn propagation from oligodendrocytes to astroglia and to regulate transcription factors involved in cytokine expression. Our results suggest that antidepressants might be of interest as anti-inflammatory and α-syn-reducing agents for MSA and other α-synucleinopathies.


Assuntos
Antidepressivos/farmacologia , Astrócitos/metabolismo , Atrofia de Múltiplos Sistemas/metabolismo , alfa-Sinucleína/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/patologia , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo
20.
J Neurosci ; 33(25): 10512-25, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23785163

RESUMO

The accumulation of intracellular ß amyloid (Aß) may be one of the factors leading to neuronal cell death in Alzheimer's disease (AD). Using a pyrazole called CNB-001, which was selected for its ability to reduce intracellular Aß, we show that the activation of the eIF2α/ATF4 arm of the unfolded protein response is sufficient to degrade aggregated intracellular Aß. CNB-001 is a potent inhibitor of 5-lipoxygenase (5-LOX), decreases 5-LOX expression, and increases proteasome activity. 5-LOX inhibition induces eIF2α and PERK (protein kinase R-like extracellular signal-regulated kinase) phosphorylation, and HSP90 and ATF4 levels. When fed to AD transgenic mice, CNB-001 also increases eIF2α phosphorylation and HSP90 and ATF4 levels, and limits the accumulation of soluble Aß and ubiquitinated aggregated proteins. Finally, CNB-001 maintains the expression of synapse-associated proteins and improves memory. Therefore, 5-LOX metabolism is a key element in the promotion of endoplasmic reticulum dysfunction, and its inhibition under conditions of stress is sufficient to reduce proteotoxicity both in vivo and in vitro.


Assuntos
Doença de Alzheimer/enzimologia , Peptídeos beta-Amiloides/toxicidade , Araquidonato 5-Lipoxigenase/metabolismo , Curcumina/análogos & derivados , Inibidores de Lipoxigenase/farmacologia , Pirazóis/farmacologia , Fator 4 Ativador da Transcrição/metabolismo , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Animais , Apomorfina/farmacologia , Comportamento Animal/fisiologia , Western Blotting , Curcumina/farmacologia , Agonistas de Dopamina/farmacologia , Eletroforese em Gel de Poliacrilamida , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma/genética , Dobramento de Proteína , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA