Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Mech Ageing Dev ; 218: 111912, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38266781

RESUMO

The global population over 60 years old is projected to reach 1.5 billion by 2050. Understanding age-related disorders and gender-specificities is crucial for a healthy aging. Reliable age-related biomarkers are needed, preferentially obtained through non-invasive methods. Urine-derived stem cells (UDSCs) can be easily obtained, although a detailed bioenergetic characterization, according to the donor aging, remain unexplored. UDSCs were isolated from young and elderly adult women (22-35 and 70-94 years old, respectively). Surprisingly, UDSCs from elderly subjects exhibited significantly higher maximal oxygen consumption and bioenergetic health index than those from younger individuals, evaluated through oxygen consumption rate. Exploratory data analysis methods were applied to engineer a minimal subset of features for the classification and stratification of UDSCs. Additionally, RNAseq of UDSCs was performed to identify age-related transcriptional changes. Transcriptional analysis revealed downregulation of genes related to glucuronidation and estrogen metabolism, and upregulation of inflammation-related genes in UDSCs from elderly individuals. This study demonstrates unexpected differences in the UDSCs' OCR between young and elderly individuals, revealing improved bioenergetics in concurrent with an aged-like transcriptome signature. UDSCs offer a non-invasive model for studying age-related changes, holding promise for aging research and therapeutic studies.


Assuntos
Metabolismo Energético , Transcriptoma , Idoso , Humanos , Feminino , Envelhecimento/genética , Envelhecimento/metabolismo , Biomarcadores/metabolismo , Células-Tronco/metabolismo
2.
Front Mol Neurosci ; 16: 1229728, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965041

RESUMO

Stem cells have potential applications in the field of neurological diseases, as they allow for the development of new biological models. These models can improve our understanding of the underlying pathologies and facilitate the screening of new therapeutics in the context of precision medicine. Stem cells have also been applied in clinical tests to repair tissues and improve functional recovery. Nevertheless, although promising, commonly used stem cells display some limitations that curb the scope of their applications, such as the difficulty of obtention. In that regard, urine-derived cells can be reprogrammed into induced pluripotent stem cells (iPSCs). However, their obtaining can be challenging due to the low yield and complexity of the multi-phased and typically expensive differentiation protocols. As an alternative, urine-derived stem cells (UDSCs), included within the population of urine-derived cells, present a mesenchymal-like phenotype and have shown promising properties for similar purposes. Importantly, UDSCs have been differentiated into neuronal-like cells, auspicious for disease modeling, while overcoming some of the shortcomings presented by other stem cells for these purposes. Thus, this review assesses the current state and future perspectives regarding the potential of UDSCs in the ambit of neurological diseases, both for disease modeling and therapeutic applications.

3.
J Neuroinflammation ; 20(1): 233, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37817156

RESUMO

The insulin-degrading enzyme (IDE) is an evolutionarily conserved zinc-dependent metallopeptidase highly expressed in the brain, where its specific functions remain poorly understood. Besides insulin, IDE is able to cleave many substrates in vitro, including amyloid beta peptides, making this enzyme a candidate pathophysiological link between Alzheimer's disease (AD) and type 2 diabetes (T2D). These antecedents led us to address the impact of IDE absence in hippocampus and olfactory bulb. A specific induction of microgliosis was found in the hippocampus of IDE knockout (IDE-KO) mice, without any effects in neither hippocampal volume nor astrogliosis. Performance on hippocampal-dependent memory tests is influenced by IDE gene dose in 12-month-old mice. Furthermore, a comprehensive characterization of the impact of IDE haploinsufficiency and total deletion in metabolic, behavioral, and molecular parameters in the olfactory bulb, a site of high insulin receptor levels, reveals an unambiguous barcode for IDE-KO mice at that age. Using wildtype and IDE-KO primary microglial cultures, we performed a functional analysis at the cellular level. IDE absence alters microglial responses to environmental signals, resulting in impaired modulation of phenotypic states, with only transitory effects on amyloid-ß management. Collectively, our results reveal previously unknown physiological functions for IDE in microglia that, due to cell-compartment topological reasons, cannot be explained by its enzymatic activity, but instead modulate their multidimensional response to various damaging conditions relevant to aging and AD conditions.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Insulisina , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Insulisina/genética , Insulisina/metabolismo , Insulisina/farmacologia , Microglia/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Encéfalo/metabolismo , Fenótipo
4.
Front Neuroanat ; 17: 1224342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711587

RESUMO

Introduction: Calcium is essential for the correct functioning of the central nervous system, and calcium-binding proteins help to finely regulate its concentration. Whereas some calcium-binding proteins such as calmodulin are ubiquitous and are present in many cell types, others such as calbindin, calretinin, and parvalbumin are expressed in specific neuronal populations. Secretagogin belongs to this latter group and its distribution throughout the brain is only partially known. In the present work, the distribution of secretagogin-immunopositive cells was studied in the entire brain of healthy adult mice. Methods: Adult male C57BL/DBA mice aged between 5 and 7 months were used. Their whole brain was sectioned and used for immunohistochemistry. Specific neural populations were observed in different zones and nuclei identified according to Paxinos mouse brain atlas. Results: Labelled cells were found with a Golgi-like staining, allowing an excellent characterization of their dendritic and axonal arborizations. Many secretagogin-positive cells were observed along different encephalic regions, especially in the olfactory bulb, basal ganglia, and hypothalamus. Immunostained populations were very heterogenous in both size and distribution, as some nuclei presented labelling in their entire extension, but in others, only scattered cells were present. Discussion: Secretagogin can provide a more complete vision of calcium-buffering mechanisms in the brain, and can be a useful neuronal marker in different brain areas for specific populations.

5.
Cells ; 12(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37443797

RESUMO

Amyotrophic lateral sclerosis (ALS) is a severe and incurable neurodegenerative disease characterized by the progressive death of motor neurons, leading to paralysis and death. It is a rare disease characterized by high patient-to-patient heterogeneity, which makes its study arduous and complex. Extracellular vesicles (EVs) have emerged as important players in the development of ALS. Thus, ALS phenotype-expressing cells can spread their abnormal bioactive cargo through the secretion of EVs, even in distant tissues. Importantly, owing to their nature and composition, EVs' formation and cargo can be exploited for better comprehension of this elusive disease and identification of novel biomarkers, as well as for potential therapeutic applications, such as those based on stem cell-derived exosomes. This review highlights recent advances in the identification of the role of EVs in ALS etiopathology and how EVs can be promising new therapeutic strategies.


Assuntos
Esclerose Lateral Amiotrófica , Exossomos , Vesículas Extracelulares , Doenças Neurodegenerativas , Humanos , Neurônios Motores
6.
Front Cell Neurosci ; 17: 1120836, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006472

RESUMO

The main olfactory bulb (MOB) is a neural structure that processes olfactory information. Among the neurotransmitters present in the MOB, nitric oxide (NO) is particularly relevant as it performs a wide variety of functions. In this structure, NO is produced mainly by neuronal nitric oxide synthase (nNOS) but also by inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS). The MOB is considered a region with great plasticity and the different NOS also show great plasticity. Therefore, it could be considered that this plasticity could compensate for various dysfunctional and pathological alterations. We examined the possible plasticity of iNOS and eNOS in the MOB in the absence of nNOS. For this, wild-type and nNOS knock-out (nNOS-KO) mice were used. We assessed whether the absence of nNOS expression could affect the olfactory capacity of mice, followed by the analysis of the expression and distribution of the NOS isoforms using qPCR and immunofluorescence. NO production in MOB was examined using both the Griess and histochemical NADPH-diaphorase reactions. The results indicate nNOS-KO mice have reduced olfactory capacity. We observed that in the nNOS-KO animal, there is an increase both in the expression of eNOS and NADPH-diaphorase, but no apparent change in the level of NO generated in the MOB. It can be concluded that the level of eNOS in the MOB of nNOS-KO is related to the maintenance of normal levels of NO. Therefore, our findings suggest that nNOS could be essential for the proper functioning of the olfactory system.

7.
Front Cell Neurosci ; 17: 1112930, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36779011

RESUMO

Microglial cells are recognized as very dynamic brain cells, screening the environment and sensitive to signals from all other cell types in health and disease. Apolipoprotein D (ApoD), a lipid-binding protein of the Lipocalin family, is required for nervous system optimal function and proper development and maintenance of key neural structures. ApoD has a cell and state-dependent expression in the healthy nervous system, and increases its expression upon aging, damage or neurodegeneration. An extensive overlap exists between processes where ApoD is involved and those where microglia have an active role. However, no study has analyzed the role of ApoD in microglial responses. In this work, we test the hypothesis that ApoD, as an extracellular signal, participates in the intercellular crosstalk sensed by microglia and impacts their responses upon physiological aging or damaging conditions. We find that a significant proportion of ApoD-dependent aging transcriptome are microglia-specific genes, and show that lack of ApoD in vivo dysregulates microglial density in mouse hippocampus in an age-dependent manner. Murine BV2 and primary microglia do not express ApoD, but it can be internalized and targeted to lysosomes, where unlike other cell types it is transiently present. Cytokine secretion profiles and myelin phagocytosis reveal that ApoD has both long-term pre-conditioning effects on microglia as well as acute effects on these microglial immune functions, without significant modification of cell survival. ApoD-triggered cytokine signatures are stimuli (paraquat vs. Aß oligomers) and sex-dependent. Acute exposure to ApoD induces microglia to switch from their resting state to a secretory and less phagocytic phenotype, while long-term absence of ApoD leads to attenuated cytokine induction and increased myelin uptake, supporting a role for ApoD as priming or immune training factor. This knowledge should help to advance our understanding of the complex responses of microglia during aging and neurodegeneration, where signals received along our lifespan are combined with damage-triggered acute signals, conditioning both beneficial roles and limitations of microglial functions.

8.
Autophagy ; 19(7): 1952-1981, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36622892

RESUMO

Microglial phagocytosis of apoptotic debris prevents buildup damage of neighbor neurons and inflammatory responses. Whereas microglia are very competent phagocytes under physiological conditions, we report their dysfunction in mouse and preclinical monkey models of stroke (macaques and marmosets) by transient occlusion of the medial cerebral artery (tMCAo). By analyzing recently published bulk and single cell RNA sequencing databases, we show that the phagocytosis dysfunction was not explained by transcriptional changes. In contrast, we demonstrate that the impairment of both engulfment and degradation was related to energy depletion triggered by oxygen and nutrient deprivation (OND), which led to reduced process motility, lysosomal exhaustion, and the induction of a protective macroautophagy/autophagy response in microglia. Basal autophagy, in charge of removing and recycling intracellular elements, was critical to maintain microglial physiology, including survival and phagocytosis, as we determined both in vivo and in vitro using pharmacological and transgenic approaches. Notably, the autophagy inducer rapamycin partially prevented the phagocytosis impairment induced by tMCAo in vivo but not by OND in vitro, where it even had a detrimental effect on microglia, suggesting that modulating microglial autophagy to optimal levels may be a hard to achieve goal. Nonetheless, our results show that pharmacological interventions, acting directly on microglia or indirectly on the brain environment, have the potential to recover phagocytosis efficiency in the diseased brain. We propose that phagocytosis is a therapeutic target yet to be explored in stroke and other brain disorders and provide evidence that it can be modulated in vivo using rapamycin.Abbreviations: AIF1/IBA1: allograft inflammatory factor 1; AMBRA1: autophagy/beclin 1 regulator 1; ATG4B: autophagy related 4B, cysteine peptidase; ATP: adenosine triphosphate; BECN1: beclin 1, autophagy related; CASP3: caspase 3; CBF: cerebral blood flow; CCA: common carotid artery; CCR2: chemokine (C-C motif) receptor 2; CIR: cranial irradiation; Csf1r/v-fms: colony stimulating factor 1 receptor; CX3CR1: chemokine (C-X3-C motif) receptor 1; DAPI: 4',6-diamidino-2-phenylindole; DG: dentate gyrus; GO: Gene Ontology; HBSS: Hanks' balanced salt solution; HI: hypoxia-ischemia; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MCA: medial cerebral artery; MTOR: mechanistic target of rapamycin kinase; OND: oxygen and nutrient deprivation; Ph/A coupling: phagocytosis-apoptosis coupling; Ph capacity: phagocytic capacity; Ph index: phagocytic index; SQSTM1: sequestosome 1; RNA-Seq: RNA sequencing; TEM: transmission electron microscopy; tMCAo: transient medial cerebral artery occlusion; ULK1: unc-51 like kinase 1.


Assuntos
Autofagia , Acidente Vascular Cerebral , Animais , Camundongos , Autofagia/fisiologia , Microglia/metabolismo , Proteína Beclina-1/metabolismo , Fagocitose/genética , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/metabolismo , Oxigênio/farmacologia , Sirolimo/farmacologia
9.
Front Aging Neurosci ; 14: 844534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493929

RESUMO

Glial cells are essential to understand Alzheimer's disease (AD) progression, given their role in neuroinflammation and neurodegeneration. There is a need for reliable and easy to manipulate models that allow studying the mechanisms behind neuron and glia communication. Currently available models such as co-cultures require complex methodologies and/or might not be affordable for all laboratories. With this in mind, we aimed to establish a straightforward in vitro setting with neurons and glial cells to study AD. We generated and optimized a 2D triple co-culture model with murine astrocytes, neurons and microglia, based on sequential seeding of each cell type. Immunofluorescence, western blot and ELISA techniques were used to characterize the effects of oligomeric Aß (oAß) in this model. We found that, in the triple co-culture, microglia increased the expression of anti-inflammatory marker Arginase I, and reduced pro-inflammatory iNOS and IL-1ß, compared with microglia alone. Astrocytes reduced expression of pro-inflammatory A1 markers AMIGO2 and C3, and displayed a ramified morphology resembling physiological conditions. Anti-inflammatory marker TGF-ß1 was also increased in the triple co-culture. Lastly, neurons increased post-synaptic markers, and developed more and longer branches than in individual primary cultures. Addition of oAß in the triple co-culture reduced synaptic markers and increased CD11b in microglia, which are hallmarks of AD. Consequently, we developed a straightforward and reproducible triple co-cultured model, where cells resemble physiological conditions better than in individual primary cultures: microglia are less inflammatory, astrocytes are less reactive and neurons display a more mature morphology. Moreover, we are able to recapitulate Aß-induced synaptic loss and CD11b increase. This model emerges as a powerful tool to study neurodegeneration and neuroinflammation in the context of AD and other neurodegenerative diseases.

10.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35328825

RESUMO

Maternal intake of omega-3 (n-3 PUFAs) and omega-6 (n-6 PUFAs) polyunsaturated fatty acids impacts hippocampal neurogenesis during development, an effect that may extend to adulthood by altering adult hippocampal neurogenesis (AHN). The n-3 PUFAs and n-6 PUFAs are precursors of inflammatory regulators that potentially affect AHN and glia. Additionally, n-3 PUFA dietary supplementation may present a sexually dimorphic action in the brain. Therefore, we postulated that dietary n-6/n-3 PUFA balance shapes the adult DG in a sex-dependent manner influencing AHN and glia. We test our hypothesis by feeding adult female and male mice with n-3 PUFA balanced or deficient diets. To analyze the immunomodulatory potential of the diets, we injected mice with the bacterial endotoxin lipopolysaccharide (LPS). LPS reduced neuroblast number, and its effect was exacerbated by the n-3 PUFA-deficient diet. The n-3 PUFA-deficient diet reduced the DG volume, AHN, microglia number, and surveilled volume. The diet effect on most mature neuroblasts was exclusively significant in female mice. Colocalization and multivariate analysis revealed an association between microglia and AHN, as well as the sexual dimorphic effect of diet. Our study reveals that female mice are more susceptible than males to the effect of dietary n-6/n-3 PUFA ratio on AHN and microglia.


Assuntos
Ácidos Graxos Ômega-3 , Ácidos Graxos Ômega-6 , Animais , Dieta , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Ácidos Graxos Insaturados/farmacologia , Feminino , Hipocampo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia , Neurogênese
11.
Stem Cells ; 39(10): 1362-1381, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34043863

RESUMO

Adenosine A2A receptor (A2A R) activation modulates several brain processes, ranging from neuronal maturation to synaptic plasticity. Most of these actions occur through the modulation of the actions of the neurotrophin brain-derived neurotrophic factor (BDNF). In this work, we studied the role of A2A Rs in regulating postnatal and adult neurogenesis in the rat hippocampal dentate gyrus (DG). Here, we show that A2A R activation with CGS 21680 promoted neural stem cell self-renewal, protected committed neuronal cells from cell death and contributed to a higher density of immature and mature neuronal cells, particularly glutamatergic neurons. Moreover, A2A R endogenous activation was found to be essential for BDNF-mediated increase in cell proliferation and neuronal differentiation. Our findings contribute to further understand the role of adenosinergic signaling in the brain and may have an impact in the development of strategies for brain repair under pathological conditions.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Hipocampo , Neurogênese , Receptor A2A de Adenosina , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Ratos , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo
12.
Free Radic Biol Med ; 163: 163-179, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33285261

RESUMO

SIRT3 is a major regulator of mitochondrial acetylome. Here we show that SIRT3 is neuroprotective in Huntington's disease (HD), a motor neurodegenerative disorder caused by an abnormal expansion of polyglutamines in the huntingtin protein (HTT). Protein and enzymatic analysis revealed that increased SIRT3 is a signature in several HD models, including human HD brain, which is regulated by oxidative species. While loss of SIRT3 further aggravated the oxidative phenotype, antioxidant treatment regularized SIRT3 levels. SIRT3 overexpression promoted the antioxidant effect in cells expressing mutant HTT, leading to enhanced mitochondrial function and balanced dynamics. Decreased Fis1 and Drp1 accumulation in mitochondria induced by SIRT3 expression favored mitochondrial elongation, while the SIRT3 activator ε-viniferin improved anterograde mitochondrial neurite transport, sustaining cell survival. Notably, SIRT3 fly-ortholog dSirt2 overexpression in HD flies ameliorated neurodegeneration and extended lifespan. These findings provide a link between oxidative stress and mitochondrial dysfunction hypotheses in HD and offer an opportunity for therapeutic development.


Assuntos
Doença de Huntington , Sirtuína 3 , Humanos , Proteína Huntingtina/genética , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Neuroproteção , Estresse Oxidativo , Sirtuína 3/genética , Sirtuína 3/metabolismo
13.
Epilepsia ; 61(11): 2593-2608, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32940364

RESUMO

OBJECTIVE: Microglial phagocytosis of apoptotic cells is an essential component of the brain regenerative response during neurodegeneration. Whereas it is very efficient in physiological conditions, it is impaired in mouse and human mesial temporal lobe epilepsy, and now we extend our studies to a model of progressive myoclonus epilepsy type 1 in mice lacking cystatin B (CSTB). METHODS: We used confocal imaging and stereology-based quantification of apoptosis and phagocytosis of the hippocampus of Cstb knockout (KO) mice, an in vitro model of phagocytosis and siRNAs to acutely reduce Cstb expression, and a virtual three-dimensional (3D) model to analyze the physical relationship between apoptosis, phagocytosis, and active hippocampal neurons. RESULTS: Microglial phagocytosis was impaired in the hippocampus of Cstb KO mice at 1 month of age, when seizures arise and hippocampal atrophy begins. This impairment was not related to the lack of Cstb in microglia alone, as shown by in vitro experiments with microglial Cstb depletion. The phagocytosis impairment was also unrelated to seizures, as it was also present in Cstb KO mice at postnatal day 14, before seizures begin. Importantly, phagocytosis impairment was restricted to the granule cell layer and spared the subgranular zone, where there are no active neurons. Furthermore, apoptotic cells (both phagocytosed and not phagocytosed) in Cstb-deficient mice were at close proximity to active cFos+ neurons, and a virtual 3D model demonstrated that the physical relationship between apoptotic cells and cFos+ neurons was specific for Cstb KO mice. SIGNIFICANCE: These results suggest a complex crosstalk between apoptosis, phagocytosis, and neuronal activity, hinting that local neuronal activity could be related to phagocytosis dysfunction in Cstb KO mice. Overall, these data suggest that phagocytosis impairment is an early feature of hippocampal damage in epilepsy and opens novel therapeutic approaches for epileptic patients based on targeting microglial phagocytosis.


Assuntos
Giro Denteado/metabolismo , Modelos Animais de Doenças , Microglia/metabolismo , Neurônios/metabolismo , Fagocitose/fisiologia , Síndrome de Unverricht-Lundborg/metabolismo , Animais , Cistatina B/deficiência , Cistatina B/genética , Giro Denteado/patologia , Camundongos , Camundongos Knockout , Microglia/patologia , Neurônios/patologia , Síndrome de Unverricht-Lundborg/genética , Síndrome de Unverricht-Lundborg/patologia
14.
Neurobiol Aging ; 92: 98-113, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32417750

RESUMO

During aging, lifestyle-related factors shape the brain's response to insults and modulate the progression of neurodegenerative pathologies such as Alzheimer's disease (AD). This is the case for chronic hyperglycemia associated with type 2 diabetes, which reduces the brain's ability to handle the neurodegenerative burden associated with AD. However, the mechanisms behind the effects of chronic hyperglycemia in the context of AD are not fully understood. Here, we show that newly generated neurons in the hippocampal dentate gyrus of triple transgenic AD (3xTg-AD) mice present increased dendritic arborization and a number of synaptic puncta, which may constitute a compensatory mechanism allowing the animals to cope with a lower neurogenesis rate. Contrariwise, chronic hyperglycemia decreases the complexity and differentiation of 3xTg-AD newborn neurons and reduces the levels of ß-catenin, a key intrinsic modulator of neuronal maturation. Moreover, synaptic facilitation is depressed in hyperglycemic 3xTg-AD mice, accompanying the defective hippocampal-dependent memory. Our data suggest that hyperglycemia evokes cellular and functional alterations that accelerate the onset of AD-related symptoms, namely memory impairment.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Hipocampo/patologia , Hiperglicemia/patologia , Memória , Neurogênese , Doença de Alzheimer/complicações , Animais , Doença Crônica , Modelos Animais de Doenças , Hiperglicemia/complicações , Masculino , Camundongos Transgênicos
15.
Artigo em Inglês | MEDLINE | ID: mdl-32116638

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that leads to impaired memory and cognitive deficits. Spine loss as well as changes in spine morphology correlates with cognitive impairment in this neurological disorder. Many studies in animal models and ex vivo cultures indicate that amyloid ß-peptide (Aß) oligomers induce synaptic damage early during the progression of the disease. Here, in order to determine the events that initiate synaptic alterations, we acutely applied oligomeric Aß to primary hippocampal neurons and an ex vivo model of organotypic hippocampal cultures from a mouse after targeted expression of EGFP to allow high-resolution imaging and algorithm-based evaluation of spine changes. Dendritic spines were classified as thin, stubby or mushroom, based on morphology. In vivo, time-lapse imaging showed that the three spine types were relatively stable, although their stability significantly decreased after treatment with Aß oligomers. Unexpectedly, we observed that the density of total dendritic spines increased in organotypic hippocampal slices treated with Aß compared to control cultures. Specifically, the fraction of stubby spines significantly increased, while mushroom and thin spines remained unaltered. Pharmacological tools revealed that acute Aß oligomers induced spine changes through mechanisms involving CaMKII and integrin ß1 activities. Additionally, analysis of dendritic complexity based on a 3D reconstruction of the whole neuron morphology showed an increase in the apical dendrite length and branching points in CA1 organotypic hippocampal slices treated with Aß. In contrast to spines, the morphological changes were affected by integrin ß1 but not by CaMKII inhibition. Altogether, these data indicate that the Aß oligomers exhibit early dual effects by acutely enhancing dendritic complexity and spine density.

16.
J Gerontol A Biol Sci Med Sci ; 75(6): 1073-1078, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32012215

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS, or classical progeria) is a rare genetic disorder, characterized by premature aging, and caused by a de novo point mutation (C608G) within the lamin A/C gene (LMNA), producing an abnormal lamin A protein, termed progerin. Accumulation of progerin causes nuclear abnormalities and cell cycle arrest ultimately leading to cellular senescence. Autophagy impairment is a hallmark of cellular aging, and the rescue of this proteostasis mechanism delays aging progression in HGPS cells. We have previously shown that the endogenous Neuropeptide Y (NPY) increases autophagy in hypothalamus, a brain area already identified as a central regulator of whole-body aging. We also showed that NPY mediates caloric restriction-induced autophagy. These results are in accordance with other studies suggesting that NPY may act as a caloric restriction mimetic and plays a role as a lifespan and aging regulator. The aim of the present study was, therefore, to investigate if NPY could delay HGPS premature aging phenotype. Herein, we report that NPY increases autophagic flux and progerin clearance in primary cultures of human dermal fibroblasts from HGPS patients. NPY also rescues nuclear morphology and decreases the number of dysmorphic nuclei, a hallmark of HGPS cells. In addition, NPY decreases other hallmarks of aging as DNA damage and cellular senescence. Altogether, these results show that NPY rescues several hallmarks of cellular aging in HGPS cells, suggesting that NPY can be considered a promising strategy to delay or block the premature aging of HGPS.


Assuntos
Lamina Tipo A/metabolismo , Neuropeptídeo Y/farmacologia , Progéria/tratamento farmacológico , Envelhecimento/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Neuropeptídeo Y/uso terapêutico , Pele/citologia
17.
J Neurosci ; 40(7): 1453-1482, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31896673

RESUMO

During adult hippocampal neurogenesis, most newborn cells undergo apoptosis and are rapidly phagocytosed by resident microglia to prevent the spillover of intracellular contents. Here, we propose that phagocytosis is not merely passive corpse removal but has an active role in maintaining neurogenesis. First, we found that neurogenesis was disrupted in male and female mice chronically deficient for two phagocytosis pathways: the purinergic receptor P2Y12, and the tyrosine kinases of the TAM family Mer tyrosine kinase (MerTK)/Axl. In contrast, neurogenesis was transiently increased in mice in which MerTK expression was conditionally downregulated. Next, we performed a transcriptomic analysis of the changes induced by phagocytosis in microglia in vitro and identified genes involved in metabolism, chromatin remodeling, and neurogenesis-related functions. Finally, we discovered that the secretome of phagocytic microglia limits the production of new neurons both in vivo and in vitro Our data suggest that microglia act as a sensor of local cell death, modulating the balance between proliferation and survival in the neurogenic niche through the phagocytosis secretome, thereby supporting the long-term maintenance of adult hippocampal neurogenesis.SIGNIFICANCE STATEMENT Microglia are the brain professional phagocytes and, in the adult hippocampal neurogenic niche, they remove newborn cells naturally undergoing apoptosis. Here we show that phagocytosis of apoptotic cells triggers a coordinated transcriptional program that alters their secretome, limiting neurogenesis both in vivo and in vitro In addition, chronic phagocytosis disruption in mice deficient for receptors P2Y12 and MerTK/Axl reduces adult hippocampal neurogenesis. In contrast, inducible MerTK downregulation transiently increases neurogenesis, suggesting that microglial phagocytosis provides a negative feedback loop that is necessary for the long-term maintenance of adult hippocampal neurogenesis. Therefore, we speculate that the effects of promoting engulfment/degradation of cell debris may go beyond merely removing corpses to actively promoting regeneration in development, aging, and neurodegenerative diseases.


Assuntos
Hipocampo/citologia , Neurogênese/fisiologia , Neurônios/citologia , Fagocitose/fisiologia , Animais , Apoptose , Sinalização do Cálcio , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Meios de Cultivo Condicionados , Retroalimentação Fisiológica , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Hipocampo/crescimento & desenvolvimento , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia , Regeneração Nervosa/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptores Purinérgicos P2Y12/fisiologia , Transcriptoma , c-Mer Tirosina Quinase/fisiologia
18.
Cell Death Dis ; 10(6): 445, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171765

RESUMO

Alzheimer´s disease (AD) is characterized by a progressive cognitive decline that correlates with the levels of amyloid ß-peptide (Aß) oligomers. Strong evidences connect changes of oligodendrocyte function with the onset of neurodegeneration in AD. However, the mechanisms controlling oligodendrocyte responses to Aß are still elusive. Here, we tested the role of Aß in oligodendrocyte differentiation, maturation, and survival in isolated oligodendrocytes and in organotypic cerebellar slices. We found that Aß peptides specifically induced local translation of 18.5-kDa myelin basic protein (MBP) isoform in distal cell processes concomitant with an increase of process complexity of MBP-expressing oligodendrocytes. Aß oligomers required integrin ß1 receptor, Src-family kinase Fyn and Ca2+/CaMKII as effectors to modulate MBP protein expression. The pharmacological inhibition of Fyn kinase also attenuated oligodendrocyte differentiation and survival induced by Aß oligomers. Similarly, using ex vivo organotypic cerebellar slices Aß promoted MBP upregulation through Fyn kinase, and modulated oligodendrocyte population dynamics by inducing cell proliferation and differentiation. Importantly, application of Aß to cerebellar organotypic slices enhanced remyelination and oligodendrocyte lineage recovery in lysolecithin (LPC)-induced demyelination. These data reveal an important role of Aß in oligodendrocyte lineage function and maturation, which may be relevant to AD pathogenesis.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Integrina beta1/metabolismo , Oligodendroglia/metabolismo , Organoides/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Doenças Desmielinizantes/metabolismo , Proteína Básica da Mielina/metabolismo , Oligodendroglia/citologia , Oligodendroglia/enzimologia , Organoides/citologia , Organoides/enzimologia , Organoides/metabolismo , Proteínas Proto-Oncogênicas c-fyn/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-fyn/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/genética
19.
Aging Cell ; 18(4): e12958, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30989815

RESUMO

Adult neurogenesis persists in the hippocampus of most mammal species during postnatal and adult life, including humans, although it declines markedly with age. The mechanisms driving the age-dependent decline of hippocampal neurogenesis are yet not fully understood. The progressive loss of neural stem cells (NSCs) is a main factor, but the true neurogenic output depends initially on the actual number of activated NSCs in each given time point. Because the fraction of activated NSCs remains constant relative to the total population, the real number of activated NSCs declines in parallel to the total NSC pool. We investigated aging-associated changes in NSCs and found that there are at least two distinct populations of NSCs. An alpha type, which maintains the classic type-1 radial morphology and accounts for most of the overall NSC mitotic activity; and an omega type characterized by increased reactive-like morphological complexity and much lower probability of division even under a pro-activation challenge. Finally, our results suggest that alpha-type NSCs are able to transform into omega-type cells overtime and that this phenotypic and functional change might be facilitated by the chronic inflammation associated with aging.


Assuntos
Senescência Celular/fisiologia , Giro Denteado/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Fenótipo , Animais , Anti-Inflamatórios/farmacologia , Diferenciação Celular/fisiologia , Inflamação/metabolismo , Camundongos , Camundongos Transgênicos , Minociclina/farmacologia , Mitose/fisiologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/fisiologia
20.
Front Cell Dev Biol ; 7: 24, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30891446

RESUMO

New neurons are continuously generated from stem cells and integrated into the adult hippocampal circuitry, contributing to memory function. Several environmental, cellular, and molecular factors regulate the formation of new neurons, but the mechanisms that govern their incorporation into memory circuits are less explored. Herein we will focus on microglia, the resident immune cells of the CNS, which modulate the production of new neurons in the adult hippocampus and are also well suited to participate in their circuit integration. Microglia may contribute to the refinement of brain circuits during development and exert a role in physiological and pathological conditions by regulating axonal and dendritic growth; promoting the formation, elimination, and relocation of synapses; modulating excitatory synaptic maturation; and participating in functional synaptic plasticity. Importantly, microglia are able to sense subtle changes in their environment and may use this information to differently modulate hippocampal wiring, ultimately impacting on memory function. Deciphering the role of microglia in hippocampal circuitry constant rewiring will help to better understand the influence of microglia on memory function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA