Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Microbiol ; 2014: 610190, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24799908

RESUMO

Vibrio cholerae, the causative agent of the diarrhoeal disease cholera, survives in aquatic environments. The bacterium has developed a survival strategy to grow and survive inside Acanthamoeba castellanii. It has been shown that V. cholerae expresses outer membrane proteins as virulence factors playing a role in the adherence to interacted host cells. This study examined the role of outer membrane protein A (OmpA) and outer membrane vesicles (OMVs) in survival of V. cholerae alone and during its interaction with A. castellanii. The results showed that an OmpA mutant of V. cholerae survived longer than wild-type V. cholerae when cultivated alone. Cocultivation with A. castellanii enhanced the survival of both bacterial strains and OmpA protein exhibited no effect on attachment, engulfment, and survival inside the amoebae. However, cocultivation of the OmpA mutant of V. cholerae decreased the viability of A. castellanii and this bacterial strain released more OMVs than wild-type V. cholerae. Surprisingly, treatment of amoeba cells with OMVs isolated from the OmpA mutant significantly decreased viable counts of the amoeba cells. In conclusion, the results might highlight a regulating rule for OmpA in survival of V. cholerae and OMVs as a potent virulence factor for this bacterium towards eukaryotes in the environment.

2.
Environ Microbiol Rep ; 2(1): 166-171, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20454692

RESUMO

Vibrio mimicus is a Gram-negative bacterium, which causes gastroenteritis and is closely related to Vibrio cholerae. The environmental reservoir of this bacterium is far from defined. Acanthamoeba as well as Vibrio species are found in diverse aquatic environments. The present study was aimed to investigate the ability of A. castellanii to host V. mimicus, the role of bacterial protease on interaction with A. castellanii and to disclose the ability of cysts to protect intracellular V. mimicus. Co-cultivation, viable counts, gentamicin assay, electron microscopy and statistical analysis showed that co-cultivation of wild type and luxO mutant of V. mimicus strains with A. castellanii did not inhibit growth of the amoeba. On the other hand co-cultivation enhanced growth and survival of V. mimicus strains. Vibrio mimicus showed intracellular behaviour because bacteria were found to be localized in the cytoplasm of amoeba trophozoites and remain viable for 14 days. The cysts protected intracellular V. mimicus from high level of gentamicin. The intracellular growth of V. mimicus in A. castellanii suggests a role of A. castellanii as a host for V. mimicus.

3.
Infect Immun ; 77(3): 935-42, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19103773

RESUMO

We identified the mutated gene locus in a pigment-overproducing Vibrio cholerae mutant of strain A1552. The deduced gene product is suggested to be an oxidoreductase based on partial homology to putative homogentisate 1,2-dioxygenase in Pseudomonas aeruginosa and Mesorhizobium loti, and we propose that the gene VC1345 in the V. cholerae genome be denoted hmgA in accordance with the nomenclature for other species. The hmgA::mini-Tn5 mutant showed a nonpigmented phenotype after complementation with a plasmid clone carrying the WT hmgA(+) locus. Microarray transcription analysis revealed that expression of hmgA and the neighboring genes encoding a postulated two-component sensor system was growth phase dependent. Results from quantitative reverse transcription-PCR analysis showed that hmgA operon expression was reduced in the rpoS mutant, but pigment production by the WT V. cholerae or the hmgA mutant was not detectably influenced by the stationary-phase regulator RpoS. The pigmented mutant showed increased UV resistance in comparison with the WT strain. Interestingly, the pigment-producing mutant expressed more toxin-coregulated pilus and cholera toxin than WT V. cholerae. Moreover, the hmgA mutant showed a fivefold increase in the ability to colonize the intestines of infant mice. A possible mechanism by which pigment production might cause induction of the ToxR regulon due to generation of hydrogen peroxide was supported by results from tests showing that externally supplied H(2)O(2) led to higher TcpA levels. Taken together, our findings suggest that melanin pigment formation may play a role in V. cholerae virulence factor expression.


Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Genes Bacterianos/genética , Melaninas/metabolismo , Oxirredutases/genética , Vibrio cholerae/genética , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Western Blotting , Elementos de DNA Transponíveis , Melaninas/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator sigma/genética , Vibrio cholerae/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA