Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sci Rep ; 11(1): 9575, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953267

RESUMO

IL-33 is upregulated in ulcerative colitis and has a protective role in chemically-induced acute murine colitis. We aimed to determine whether IL-33 influences Il10-/- chronic colitis and its cellular source in health and during colitis. Il10-/-Il33-/- and Il10-/-Il33+/+ littermates developed colitis of similar severity. Colon Il33 was induced in WT and Il10-/- mice exposed to DSS, but not in unchallenged Il10-/- mice with colitis. Il33-citrine reporter mice showed that Il33-citrine colocalized with α-smooth muscle actin+ myofibroblasts and vimentin+ fibroblasts in WT mice. Citrine+CD74+CD90hi inflammatory fibroblasts were increased with DSS treatment. IL-1ß induced Il33 expression in colon myofibroblasts, but colon Il33 expression did not differ between DSS-treated WT and Il1r1-/- mice. In conclusion, deficiency of IL-33 does not alter the severity of chronic colitis in Il10-/- mice. Induction of Il33 upon DSS exposure in WT and Il10-/- mice, but not in unchallenged Il10-/- mice, suggests epithelial injury induces colon IL-33. Fibroblasts are the primary colonic source of IL-33 and IL-33-expressing CD90hiCD74+ fibroblasts are increased during DSS-induced colitis. IL-1ß induces Il33 in colon myofibroblasts in vitro, but signaling through the IL-1R1 is not necessary for induction of IL-33 in DSS-induced colitis.


Assuntos
Colite/metabolismo , Colo/metabolismo , Fibroblastos/metabolismo , Interleucina-33/metabolismo , Animais , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Fibroblastos/patologia , Regulação da Expressão Gênica , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-33/genética , Masculino , Camundongos , Camundongos Knockout
3.
J Immunol ; 202(2): 598-607, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30530480

RESUMO

Regulation of the intestinal mucus layer by goblet cells is important for preventing inflammation and controlling infection. IL-33, a cytokine upregulated in inflammatory bowel disease and helminth infection, induces intestinal goblet cells, but the mechanism remains unclear. Enteroids are three-dimensional structures of primary small intestinal epithelial cells that contain all differentiated intestinal epithelial cell types. We developed an enteroid-immune cell coculture model to determine the mechanism through which IL-33 affects intestinal goblet cell differentiation. We report that IL-33 does not directly induce goblet cell differentiation in murine enteroids; however, IL-13, a cytokine induced by IL-33, markedly induces goblet cells and gene expression consistent with goblet cell differentiation. When enteroids are cocultured with CD90+ mesenteric lymph node cells from IL-33-treated mice, IL-33 then induces IL-13 secretion by group 2 innate lymphoid cells and enteroid gene expression consistent with goblet cell differentiation. In cocultures, IL-33-induced Muc2 expression is dependent on enteroid Il4ra expression, demonstrating a requirement for IL-13 signaling in epithelial cells. In vivo, IL-33-induced intestinal goblet cell hyperplasia is dependent on IL-13. These studies demonstrate that IL-33 induces intestinal goblet cell differentiation not through direct action on epithelial cells but indirectly through IL-13 production by goup 2 innate lymphoid cells.


Assuntos
Diferenciação Celular , Células Caliciformes/imunologia , Imunidade Inata , Interleucina-13/imunologia , Interleucina-33/imunologia , Linfócitos/imunologia , Animais , Técnicas de Cocultura , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucina-2/genética , Mucina-2/imunologia , Receptores de Superfície Celular/genética , Transdução de Sinais
4.
Cell Stem Cell ; 21(1): 51-64.e6, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28648364

RESUMO

Gastric and small intestinal organoids differentiated from human pluripotent stem cells (hPSCs) have revolutionized the study of gastrointestinal development and disease. Distal gut tissues such as cecum and colon, however, have proved considerably more challenging to derive in vitro. Here we report the differentiation of human colonic organoids (HCOs) from hPSCs. We found that BMP signaling is required to establish a posterior SATB2+ domain in developing and postnatal intestinal epithelium. Brief activation of BMP signaling is sufficient to activate a posterior HOX code and direct hPSC-derived gut tube cultures into HCOs. In vitro, HCOs express colonic markers and contained colon-specific cell populations. Following transplantation into mice, HCOs undergo morphogenesis and maturation to form tissue that exhibits molecular, cellular, and morphologic properties of human colon. Together these data show BMP-dependent patterning of human hindgut into HCOs, which will be valuable for studying diseases including colitis and colon cancer.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Colo/metabolismo , Organoides/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais , Animais , Colo/citologia , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Organoides/citologia , Organoides/transplante , Células-Tronco Pluripotentes/citologia
5.
Physiol Rep ; 5(7)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28373409

RESUMO

The etiology and mechanisms for inflammatory bowel disease (IBD) are incompletely known. Determination of new, clinically important mechanisms for intestinal inflammation is imperative for developing effective therapies to treat IBD We sought to define a widespread mechanism for colon mucosal inflammation via the activation of TGF-ß activated Kinase 1 (TAK1), a central regulator of cellular inflammatory actions. Activation of TAK1 and the downstream inflammatory signaling mediators was determined in pediatric patients with ulcerative colitis (UC) or Crohn's disease (CD) as well as in DSS-induced and spontaneous IBD in mice. The role of TAK1 in facilitating intestinal inflammation in murine models of IBD was investigated by using (5Z)-7-Oxozeaenol, a highly selective pharmacological inhibitor of TAK1. We found hyper-activation of TAK1 in patients with UC or CD and in murine models of IBD Pharmacological inhibition of TAK1 prevented loss in body weight, disease activity, microscopic histopathology, infiltration of inflammatory cells in the colon mucosa, and elevated proinflammatory cytokine production in two murine models of IBD We demonstrated that at the early phase of the disease activation of TAK1 is restricted in the epithelial cells. However, at a more advanced stage of the disease, TAK1 activation predominantly occurs in nonepithelial cells, especially in macrophages. These findings elucidate the activation of TAK1 as crucial in promoting intestinal inflammation. Thus, the TAK1 activation pathway may represent a suitable target to design new therapies for treating IBD in humans.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Colo/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Adolescente , Animais , Criança , Pré-Escolar , Colo/patologia , Feminino , Humanos , Doenças Inflamatórias Intestinais/patologia , Interleucina-10/genética , Interleucina-10/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Knockout
6.
Gastroenterology ; 152(6): 1345-1357.e7, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28132889

RESUMO

BACKGROUND & AIMS: There is controversy regarding the role of the type 2 immune response in the pathogenesis of ulcerative colitis (UC)-few data are available from treatment-naive patients. We investigated whether genes associated with a type 2 immune response in the intestinal mucosa are up-regulated in treatment-naive pediatric patients with UC compared with patients with Crohn's disease (CD)-associated colitis or without inflammatory bowel disease (IBD), and whether expression levels are associated with clinical outcomes. METHODS: We used a real-time reverse-transcription quantitative polymerase chain reaction array to analyze messenger RNA (mRNA) expression patterns in rectal mucosal samples from 138 treatment-naive pediatric patients with IBD and macroscopic rectal disease, as well as those from 49 children without IBD (controls), enrolled in a multicenter prospective observational study from 2008 to 2012. Results were validated in real-time reverse-transcription quantitative polymerase chain reaction analyses of rectal RNA from an independent cohort of 34 pediatric patients with IBD and macroscopic rectal disease and 17 controls from Cincinnati Children's Hospital Medical Center. RESULTS: We measured significant increases in mRNAs associated with a type 2 immune response (interleukin [IL]5 gene, IL13, and IL13RA2) and a type 17 immune response (IL17A and IL23) in mucosal samples from patients with UC compared with patients with colon-only CD. In a regression model, increased expression of IL5 and IL17A mRNAs distinguished patients with UC from patients with colon-only CD (P = .001; area under the receiver operating characteristic curve, 0.72). We identified a gene expression pattern in rectal tissues of patients with UC, characterized by detection of IL13 mRNA, that predicted clinical response to therapy after 6 months (odds ratio [OR], 6.469; 95% confidence interval [CI], 1.553-26.94), clinical response after 12 months (OR, 6.125; 95% CI, 1.330-28.22), and remission after 12 months (OR, 5.333; 95% CI, 1.132-25.12). CONCLUSIONS: In an analysis of rectal tissues from treatment-naive pediatric patients with IBD, we observed activation of a type 2 immune response during the early course of UC. We were able to distinguish patients with UC from those with colon-only CD based on increased mucosal expression of genes that mediate type 2 and type 17 immune responses. Increased expression at diagnosis of genes that mediate a type 2 immune response is associated with response to therapy and remission in pediatric patients with UC.


Assuntos
Colite Ulcerativa/genética , Doença de Crohn/genética , Imunidade nas Mucosas/genética , Interleucinas/genética , Mucosa Intestinal/imunologia , Adolescente , Área Sob a Curva , Estudos de Casos e Controles , Criança , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/tratamento farmacológico , Colo/patologia , Doença de Crohn/diagnóstico , Doença de Crohn/tratamento farmacológico , Feminino , Expressão Gênica , Humanos , Interleucina-13/genética , Subunidade alfa2 de Receptor de Interleucina-13/genética , Interleucina-17/genética , Interleucina-23/genética , Interleucina-5/genética , Mucosa Intestinal/metabolismo , Masculino , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , RNA Mensageiro/análise , Curva ROC , Reto , Transcriptoma , Regulação para Cima
7.
Inflamm Bowel Dis ; 21(12): 2737-46, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26313694

RESUMO

BACKGROUND: IL-33, a member of the IL-1 cytokine family that signals through ST2, is upregulated in ulcerative colitis (UC); however, the role of IL-33 in colitis remains unclear. IL-33 augments type 2 immune responses, which have been implicated in UC pathogenesis. We sought to determine the role of IL-33 signaling in oxazolone (OXA) colitis, a type 2 cytokine-mediated murine model of UC. METHODS: Colon mucosal IL-33 expression was compared between pediatric and adult UC and non-IBD patients using immunohistochemistry and real-time PCR. OXA colitis was induced in WT, IL-33, and ST2 mice, and histopathology, cytokine levels, and goblet cells were assessed. Transepithelial resistance was measured across IL-33-treated T84 cell monolayers. RESULTS: Colon mucosal IL-33 was increased in pediatric patients with active UC and in OXA colitis. IL-33 and ST2 OXA mice exhibited increased disease severity compared with WT OXA mice. OXA induced a mixed mucosal cytokine response, but few differences were observed between OXA WT and IL-33 or ST2 mice. Goblet cells were significantly decreased in IL-33 and ST2 OXA compared with WT OXA mice. IL-33 augmented transepithelial resistance in T84 cells, and this effect was blocked by the ERK1/2 inhibitor PD98,059. CONCLUSIONS: OXA colitis is exacerbated in IL-33 and ST2 mice. Increased mucosal IL-33 in human UC and murine colitis may be a homeostatic response to limit inflammation, potentially through effects on epithelial barrier function. Further investigation of IL-33 protective mechanisms would inform the development of novel therapeutic approaches.


Assuntos
Colite Ulcerativa/metabolismo , Colite/metabolismo , Interleucina-33/metabolismo , Mucosa Intestinal/metabolismo , Adulto , Animais , Criança , Colite/induzido quimicamente , Colite/patologia , Colite Ulcerativa/patologia , Colo/metabolismo , Citocinas/metabolismo , Células Caliciformes/metabolismo , Humanos , Imuno-Histoquímica , Proteína 1 Semelhante a Receptor de Interleucina-1 , Intestinos/patologia , Camundongos , Oxazolona , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Interleucina , Transdução de Sinais , Regulação para Cima
8.
Nat Med ; 20(11): 1310-4, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25326803

RESUMO

Differentiation of human pluripotent stem cells (hPSCs) into organ-specific subtypes offers an exciting avenue for the study of embryonic development and disease processes, for pharmacologic studies and as a potential resource for therapeutic transplant. To date, limited in vivo models exist for human intestine, all of which are dependent upon primary epithelial cultures or digested tissue from surgical biopsies that include mesenchymal cells transplanted on biodegradable scaffolds. Here, we generated human intestinal organoids (HIOs) produced in vitro from human embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) that can engraft in vivo. These HIOs form mature human intestinal epithelium with intestinal stem cells contributing to the crypt-villus architecture and a laminated human mesenchyme, both supported by mouse vasculature ingrowth. In vivo transplantation resulted in marked expansion and maturation of the epithelium and mesenchyme, as demonstrated by differentiated intestinal cell lineages (enterocytes, goblet cells, Paneth cells, tuft cells and enteroendocrine cells), presence of functional brush-border enzymes (lactase, sucrase-isomaltase and dipeptidyl peptidase 4) and visible subepithelial and smooth muscle layers when compared with HIOs in vitro. Transplanted intestinal tissues demonstrated digestive functions as shown by permeability and peptide uptake studies. Furthermore, transplanted HIO-derived tissue was responsive to systemic signals from the host mouse following ileocecal resection, suggesting a role for circulating factors in the intestinal adaptive response. This model of the human small intestine may pave the way for studies of intestinal physiology, disease and translational studies.


Assuntos
Intestino Delgado/fisiologia , Modelos Biológicos , Células-Tronco Pluripotentes/citologia , Adulto , Animais , Ceco/cirurgia , Linhagem Celular , Humanos , Íleo/cirurgia , Técnicas In Vitro , Intestino Delgado/transplante , Camundongos Endogâmicos NOD , Camundongos SCID , Organoides/citologia
9.
PLoS One ; 7(3): e32635, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22427856

RESUMO

In multicellular organisms, morphogenesis is a highly coordinated process that requires dynamically regulated adhesion between cells. An excellent example of cellular morphogenesis is the formation of the neural tube from the flattened epithelium of the neural plate. Cysteine-rich motor neuron protein 1 (CRIM1) is a single-pass (type 1) transmembrane protein that is expressed in neural structures beginning at the neural plate stage. In the frog Xenopus laevis, loss of function studies using CRIM1 antisense morpholino oligonucleotides resulted in a failure of neural development. The CRIM1 knockdown phenotype was, in some cases, mild and resulted in perturbed neural fold morphogenesis. In severely affected embryos there was a dramatic failure of cell adhesion in the neural plate and complete absence of neural structures subsequently. Investigation of the mechanism of CRIM1 function revealed that it can form complexes with ß-catenin and cadherins, albeit indirectly, via the cytosolic domain. Consistent with this, CRIM1 knockdown resulted in diminished levels of cadherins and ß-catenin in junctional complexes in the neural plate. We conclude that CRIM1 is critical for cell-cell adhesion during neural development because it is required for the function of cadherin-dependent junctions.


Assuntos
Junções Intercelulares/fisiologia , Proteínas de Membrana/metabolismo , Morfogênese/fisiologia , Complexos Multiproteicos/metabolismo , Tubo Neural/embriologia , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Caderinas/metabolismo , Primers do DNA/genética , Imunofluorescência , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Hibridização In Situ , Proteínas de Membrana/fisiologia , Morfolinos , Proteínas de Xenopus/fisiologia , beta Catenina/metabolismo
10.
Nature ; 470(7332): 105-9, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21151107

RESUMO

Studies in embryonic development have guided successful efforts to direct the differentiation of human embryonic and induced pluripotent stem cells (PSCs) into specific organ cell types in vitro. For example, human PSCs have been differentiated into monolayer cultures of liver hepatocytes and pancreatic endocrine cells that have therapeutic efficacy in animal models of liver disease and diabetes, respectively. However, the generation of complex three-dimensional organ tissues in vitro remains a major challenge for translational studies. Here we establish a robust and efficient process to direct the differentiation of human PSCs into intestinal tissue in vitro using a temporal series of growth factor manipulations to mimic embryonic intestinal development. This involved activin-induced definitive endoderm formation, FGF/Wnt-induced posterior endoderm pattering, hindgut specification and morphogenesis, and a pro-intestinal culture system to promote intestinal growth, morphogenesis and cytodifferentiation. The resulting three-dimensional intestinal 'organoids' consisted of a polarized, columnar epithelium that was patterned into villus-like structures and crypt-like proliferative zones that expressed intestinal stem cell markers. The epithelium contained functional enterocytes, as well as goblet, Paneth and enteroendocrine cells. Using this culture system as a model to study human intestinal development, we identified that the combined activity of WNT3A and FGF4 is required for hindgut specification whereas FGF4 alone is sufficient to promote hindgut morphogenesis. Our data indicate that human intestinal stem cells form de novo during development. We also determined that NEUROG3, a pro-endocrine transcription factor that is mutated in enteric anendocrinosis, is both necessary and sufficient for human enteroendocrine cell development in vitro. PSC-derived human intestinal tissue should allow for unprecedented studies of human intestinal development and disease.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Intestinos/citologia , Ativinas/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Padronização Corporal/efeitos dos fármacos , Técnicas de Cultura de Células , Células Cultivadas , Meios de Cultura/química , Meios de Cultura/farmacologia , Células-Tronco Embrionárias/efeitos dos fármacos , Endoderma/citologia , Endoderma/efeitos dos fármacos , Endoderma/embriologia , Fator 4 de Crescimento de Fibroblastos/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Intestinos/anatomia & histologia , Intestinos/efeitos dos fármacos , Intestinos/embriologia , Microvilosidades/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Organogênese/efeitos dos fármacos , Fatores de Tempo , Proteínas Wnt/farmacologia , Proteína Wnt3 , Proteína Wnt3A
11.
Development ; 134(24): 4449-58, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18039971

RESUMO

Macrophages have a critical function in the recognition and engulfment of dead cells. In some settings, macrophages also actively signal programmed cell death. Here we show that during developmentally scheduled vascular regression, resident macrophages are an obligatory participant in a signaling switch that favors death over survival. This switch occurs when the signaling ligand angiopoietin 2 has the dual effect of suppressing survival signaling in vascular endothelial cells (VECs) and stimulating Wnt ligand production by macrophages. In response to the Wnt ligand, VECs enter the cell cycle and in the absence of survival signals, die from G1 phase of the cell cycle. We propose that this mechanism represents an adaptation to ensure that the macrophage and its disposal capability are on hand when cell death occurs.


Assuntos
Angiopoietina-2/fisiologia , Apoptose/fisiologia , Macrófagos/citologia , Macrófagos/fisiologia , Angiopoietina-2/genética , Animais , Apoptose/genética , Ciclo Celular , Proliferação de Células , Células Endoteliais/citologia , Ligantes , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor TIE-2/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo
12.
Nature ; 437(7057): 417-21, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16163358

RESUMO

Macrophages have a critical role in inflammatory and immune responses through their ability to recognize and engulf apoptotic cells. Here we show that macrophages initiate a cell-death programme in target cells by activating the canonical WNT pathway. We show in mice that macrophage WNT7b is a short-range paracrine signal required for WNT-pathway responses and programmed cell death in the vascular endothelial cells of the temporary hyaloid vessels of the developing eye. These findings indicate that macrophages can use WNT ligands to influence cell-fate decisions--including cell death--in adjacent cells, and raise the possibility that they do so in many different cellular contexts.


Assuntos
Apoptose , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Olho/irrigação sanguínea , Glicoproteínas/metabolismo , Macrófagos/metabolismo , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas/metabolismo , Animais , Glicoproteínas/genética , Ligantes , Macrófagos/citologia , Macrófagos/fisiologia , Macrófagos/transplante , Camundongos , Camundongos Transgênicos , Comunicação Parácrina , Proteínas Proto-Oncogênicas/genética , Proteínas Wnt
13.
Dev Biol ; 267(2): 450-61, 2004 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15013805

RESUMO

Lens regeneration in the adult newt is a classic example of replacing a lost organ by the process of transdifferentiation. After lens removal, the pigmented epithelial cells of the dorsal iris proliferate and dedifferentiate to form a lens vesicle, which subsequently differentiates to form a new lens. In searching for factors that control this remarkable process, we investigated the expression and role of hedgehog pathway members. These molecules are known to affect retina and pigment epithelium morphogenesis and have been recently shown to be involved in repair processes. Here we show that Shh, Ihh, ptc-1, and ptc-2 are expressed during lens regeneration. The expression of Shh and Ihh is quite unique since these genes have never been detected in lens. Interestingly, both Shh and Ihh are only expressed in the regenerating and developing lens, but not in the intact lens. Interfering with the hedgehog pathway results in considerable inhibition of the process of lens regeneration, including decreased cell proliferation as well as interference with lens fiber differentiation in the regenerating lens vesicle. Down-regulation of ptc-1 was also observed when inhibiting the pathway. These results provide the first evidence of a novel role for the hedgehog pathway in specific regulation of the regenerating lens.


Assuntos
Regulação da Expressão Gênica , Cristalino/fisiologia , Regeneração/fisiologia , Salamandridae/fisiologia , Transativadores/fisiologia , Animais , Bromodesoxiuridina , Primers do DNA , Proteínas Hedgehog , Imuno-Histoquímica , Hibridização In Situ , Proteínas de Membrana/metabolismo , Receptores Patched , RNA/genética , Receptores de Superfície Celular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA