Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 349: 140689, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37963497

RESUMO

Dermal uptake is an important and complex exposure route for a wide range of chemicals. Dermal exposure can occur due to occupational settings, pharmaceutical applications, environmental contamination, or consumer product use. The large range of both chemicals and scenarios of interest makes it difficult to perform generalizable experiments, creating a need for a generic model to simulate various scenarios. In this study, a model consisting of a series of four well-mixed compartments, representing the source solution (vehicle), stratum corneum, viable tissue, and receptor fluid, was developed for predicting dermal absorption. The model considers experimental conditions including small applied doses as well as evaporation of the vehicle and chemical. To evaluate the model assumptions, we compare model predictions for a set of 26 chemicals to finite dose in-vitro experiments from a single laboratory using steady-state permeability coefficient and equilibrium partition coefficient data derived from in-vitro experiments of infinite dose exposures to these same chemicals from a different laboratory. We find that the model accurately predicts, to within an order of magnitude, total absorption after 24 h for 19 of these chemicals. In combination with key information on experimental conditions, the model is generalizable and can advance efficient assessment of dermal exposure for chemical risk assessment.


Assuntos
Absorção Cutânea , Pele , Humanos , Pele/metabolismo , Epiderme , Permeabilidade
2.
Food Chem Toxicol ; 65: 269-79, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24374094

RESUMO

Consumer products are a primary source of chemical exposures, yet little structured information is available on the chemical ingredients of these products and the concentrations at which ingredients are present. To address this data gap, we created a database of chemicals in consumer products using product Material Safety Data Sheets (MSDSs) publicly provided by a large retailer. The resulting database represents 1797 unique chemicals mapped to 8921 consumer products and a hierarchy of 353 consumer product "use categories" within a total of 15 top-level categories. We examine the utility of this database and discuss ways in which it will support (i) exposure screening and prioritization, (ii) generic or framework formulations for several indoor/consumer product exposure modeling initiatives, (iii) candidate chemical selection for monitoring near field exposure from proximal sources, and (iv) as activity tracers or ubiquitous exposure sources using "chemical space" map analyses. Chemicals present at high concentrations and across multiple consumer products and use categories that hold high exposure potential are identified. Our database is publicly available to serve regulators, retailers, manufacturers, and the public for predictive screening of chemicals in new and existing consumer products on the basis of exposure and risk.


Assuntos
Qualidade de Produtos para o Consumidor , Sistemas de Gerenciamento de Base de Dados , Exposição Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA