Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brain Sci ; 13(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38137102

RESUMO

Lissencephaly (LIS) is a rare neurodevelopmental disorder with severe symptoms caused by abnormal neuronal migration during cortical development. It is caused by both genetic and non-genetic factors. Despite frequent studies about the cortex, comprehensive elucidation of structural abnormalities and their effects on the white matter is limited. The main objective of this study is to analyze abnormal neuronal migration pathways and white matter fiber organization in LIS1-associated LIS using diffusion MRI (dMRI) tractography. For this purpose, slabs of brain specimens with LIS (n = 3) and age and sex-matched controls (n = 4) were scanned with 3T dMRI. Our high-resolution ex vivo dMRI successfully identified common abnormalities across the samples. The results revealed an abnormal increase in radially oriented subcortical fibers likely associated with radial migration pathways and u-fibers and a decrease in association fibers in all LIS specimens.

2.
Front Neurosci ; 16: 1023665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36817099

RESUMO

Introduction: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, communication and repetitive, restrictive behaviors, features supported by cortical activity. Given the importance of the subventricular zone (SVZ) of the lateral ventrical to cortical development, we compared molecular, cellular, and structural differences in the SVZ and linked cortical regions in specimens of ASD cases and sex and age-matched unaffected brain. Methods: We used magnetic resonance imaging (MRI) and diffusion tractography on ex vivo postmortem brain samples, which we further analyzed by Whole Genome Bisulfite Sequencing (WGBS), Flow Cytometry, and RT qPCR. Results: Through MRI, we observed decreased tractography pathways from the dorsal SVZ, increased pathways from the posterior ventral SVZ to the insular cortex, and variable cortical thickness within the insular cortex in ASD diagnosed case relative to unaffected controls. Long-range tractography pathways from and to the insula were also reduced in the ASD case. FACS-based cell sorting revealed an increased population of proliferating cells in the SVZ of ASD case relative to the unaffected control. Targeted qPCR assays of SVZ tissue demonstrated significantly reduced expression levels of genes involved in differentiation and migration of neurons in ASD relative to the control counterpart. Finally, using genome-wide DNA methylation analyses, we identified 19 genes relevant to neurological development, function, and disease, 7 of which have not previously been described in ASD, that were significantly differentially methylated in autistic SVZ and insula specimens. Conclusion: These findings suggest a hypothesis that epigenetic changes during neurodevelopment alter the trajectory of proliferation, migration, and differentiation in the SVZ, impacting cortical structure and function and resulting in ASD phenotypes.

3.
Cereb Cortex ; 32(6): 1200-1211, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34455432

RESUMO

Early interventions for autism spectrum disorder (ASD) are increasingly available, while only 42-50% of ASD children are diagnosed before 3 years old (YO). To identify neuroimaging biomarkers for early ASD diagnosis, we evaluated surface- and voxel-based brain morphometry in participants under 3YO who were later diagnosed with ASD. Magnetic resonance imaging data were retrospectively obtained from patients later diagnosed with ASD at Boston Children's Hospital. The ASD participants with comorbidities such as congenital disorder, epilepsy, and global developmental delay/intellectual disability were excluded from statistical analyses. Eighty-five structural brain magnetic resonance imaging images were collected from 81 participants under 3YO and compared with 45 images from 45 gender- and age-matched nonautistic controls (non-ASD). Using an Infant FreeSurfer pipeline, 236 regionally distributed measurements were extracted from each scan. By t-tests and linear mixed models, the smaller nucleus accumbens and larger bilateral lateral, third, and fourth ventricles were identified in the ASD group. Vertex-wise t-statistical maps showed decreased thickness in the caudal anterior cingulate cortex and increased thickness in the right medial orbitofrontal cortex in ASD. The smaller bilateral accumbens nuclei and larger cerebral ventricles were independent of age, gender, or gestational age at birth, suggesting that there are MRI-based biomarkers in prospective ASD patients before they receive the diagnosis and that the volume of the nucleus accumbens and cerebral ventricles can be key MRI-based early biomarkers to predict the emergence of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Biomarcadores , Ventrículos Cerebrais/patologia , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Núcleo Accumbens/diagnóstico por imagem , Estudos Prospectivos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA