Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cytotechnology ; 76(1): 27-38, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38304626

RESUMO

The present study assessed the supportive roles of the decellularized human ovarian tissue in homing of mouse fetal ovarian cells into the scaffold as well as the formation of the follicular-like structure. The human ovarian cortical tissues were decellularized by three freeze-thaw cycles and then, treated with Triton X-100 for 15 h and 0.5% sodium dodecyl sulfate for 72 h. After isolation and preparation of mouse fetal ovarian cells (19 dpc) they were seeded into the decellularized scaffolds and cultured for 7 days, then using a light microscope, laser confocal scanning microscope, and scanning electron microscope these scaffolds were studied. Analysis of gene expression related to oocyte and follicular cells such as Ddx4, Nobox, Gdf9, and Connexin37 was assessed by real-time RT-PCR and the DDX4 and GDF9 proteins were detected by immunohistochemistry. The result showed that the human ovarian tissue was decellularized properly and the tissue elements and integrity were well preserved. After 7 days of in vitro culture, the fetal ovarian cells attached and penetrated into different sites and depths of the scaffold. The formed organoid within the scaffold showed large round, small polyhedral, and elongated spindle cells similar to the follicle structure. The molecular analysis and immunohistochemistry were confirmed an increase in the expression of genes and proteins related to oocyte and follicular cells in these reconstructed structures. In conclusion, the recellularization of human ovarian scaffolds by mouse fetal ovarian cells could support the follicular-like structure formation and it provides an in vitro model for follicle reconstitution and offers an alternative approach for clinical usage.

2.
J Ovarian Res ; 17(1): 2, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167472

RESUMO

BACKGROUND: The objective of this study was to induce the differentiation of human theca stem cells (hTSCs) into germ cell-like cells (hGCLCs) and assess their developmental progression following in vitro 3D culture with ovarian somatic cells within the follicle-like structures. To achieve this, the hTSCs were isolated from small antral follicles of three patients of varying ages and were then seeded in a differentiation medium for 40 days. The differentiated hGCLCs were subsequently aggregated with somatic ovarian cells (cumulus cells and hTSCs) in a ratio of 1:10 and cultured in a growth medium in a suspension culture dish. In addition to examining the morphologies, sizes, and viabilities of the differentiated hGCLCs, this study also analyzed the expression of DAZL and GDF9 proteins within the follicle-like structures. RESULTS: After 12 days, the hTSCs began to differentiate into hGCLCs, with their shapes changing from spindle-shaped to spherical. The sizes of hGCLCs increased during the differentiation period (from 25 µm to 50 µm). The survival rate of the hGCLCs after differentiation and in vitro development in primordial follicle-like structures was 54%. Unlike hTSCs, which did not express the DAZL protein, the hGCLCs and follicle-like structures successfully expressed DAZL protein (P-value < 0.05). However, hGCLCs poorly expressed the GDF9 protein. Further, the culture of hGCLCs in primordial follicle-like structures significantly increased GDF9 expression (P-value < 0.05). CONCLUSION: In conclusion, our study demonstrated that 3D cultures with ovarian somatic cells in follicle-like structures caused the successful differentiation of reproducible hGCLCs from hTSCs derived from three patients of different ages. Moreover, this method not only enhanced the in vitro development of hGCLCs but also presented a novel approach for co-culturing and developing in vitro oocyte like cells, ultimately leading to the production of artificial follicles.


Assuntos
Folículo Ovariano , Células Tecais , Feminino , Humanos , Folículo Ovariano/metabolismo , Ovário , Oócitos , Células Germinativas , Células-Tronco
3.
Cell J ; 25(11): 809-812, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071413

RESUMO

Today, timely diagnosis and therapeutic progress open a road of hope for survival in cancerous patients. Increased knowledge about the various cytotoxic treatment's impacts on ovarian function and fertility has resulted in a surge in the number of patients seeking to preserve their fertility before starting the anti-cancer treatment process. In this regard, embryo cryopreservation can be recommended for fertility preservation when the woman is married and has adequate time for ovarian stimulation. If patients are prepubertal girls or not married women, oocytes or ovarian tissue can be frozen instead to be used in the future. In this regard, the first attempts for ovarian tissue transplantations were conducted in 2016 and in 2019 for two cancerous patients whose ovarian tissue was cryopreserved in the Royan Human Ovarian Tissue Bank (Tehran, Iran). Unfortunately, the transplantations did not result in a live birth.

4.
J Assist Reprod Genet ; 40(7): 1611-1622, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37079226

RESUMO

PURPOSE: Despite the significant advances in the in vitro development of human primordial follicles, it is still a challenging approach with great potential for improvements. Therefore, the present study aimed to investigate the effect of a feeder layer of human theca progenitor cells (hTPCs) on the development of primordial follicles embedded in human ovarian tissue. METHODS: Fragments of frozen-thawed ovarian tissue were activated using the vanadate-derivative dipotassium bisperoxo (5-hydroxy-pyridine-2-carboxylic) oxovanadate (V) and kit ligand for 24 h. Then, the specimens were divided into the co-culture and mono-culture groups and were cultured with and without a hTPC feeder layer for 6 days, respectively. Afterward, the follicles were counted and classified, and the hormone levels and expression levels of apoptosis- and folliculogenesis-related genes were assessed. RESULTS: Both culture groups showed significant follicle growth (P < 0.05). However, the co-culture group had a significantly higher number of growing follicles compared to the other group (P < 0.05). Moreover, the expression levels of ZP1, ZP2, ZP3, BMP-7, AMH, and GDF9 were significantly higher in the co-culture group compared to the other group (P < 0.05), while the expression levels of P53 and CASP3 were significantly lower (P < 0.05). Also, the concentrations of estradiol, progesterone, testosterone, and androstenedione were significantly higher in the co-culture group compared to the other group (P < 0.05). CONCLUSION: The present study results provided novel evidence on the direct role of hTPCs in the growth and development of human primordial follicles. However, there is a need for future studies to illustrate the underlying mechanisms. Schematic summary of the results. According to our results, the expression of ZP1, ZP2, ZP3, and GDF9 in the oocytes, AMH in the granulosa cells, and BMP4 in the theca cells of the co-culture group were significantly higher than those of the mono-culture and non-culture groups, while the expression of apoptotic genes (BAX, CASP3, and P53) was significantly lower. Moreover, the co-culture group showed significantly increased levels of estradiol, progesterone, testosterone, and androstenedione in its culture media compared to the mono-culture groups.


Assuntos
Progesterona , Células Tecais , Feminino , Humanos , Células Tecais/metabolismo , Caspase 3 , Progesterona/metabolismo , Androstenodiona/metabolismo , Androstenodiona/farmacologia , Técnicas de Cocultura , Proteína Supressora de Tumor p53/genética , Células da Granulosa/metabolismo , Estradiol/metabolismo , Testosterona/metabolismo
5.
J Ovarian Res ; 16(1): 56, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941728

RESUMO

OBJECTIVE (S): One way to overcome the recurrence of cancer cells following ovarian tissue transplantation is to use decellularized tissues as a scaffold that does not have any cellular components. These cell-free scaffolds can be seeded with different type of stem cells for ovarian restoration. MATERIALS AND METHODS: OSCs, PMSCs and BMSCs (oogonial, peritoneal and bone marrow mesenchymal stem cells, respectively) were seeded into human decellularized ovarian tissue as 4 groups: Scaffold + OSCs (SO), Scaffold + OSC + PMSCs (SOP), Scaffold + OSC + BMSCs (SOB) and Scaffold + OSC + PMSCs + BMSCs (SOPB). The produced grafts were transplanted into the sub-peritoneal space of ovariectomized NMRI mice as artificial ovary (AO). The expression of Vegf, CD34, Gdf9, Zp3, Ddx4, Amh and Lhr genes in AOs were measured by qRT-PCR. Also, histotechniques were considered to detect the anti GFP, PCNA, VEGF, GDF9, ZP3 and AMH proteins. RESULTS: H & E staining showed follicle-like structures in all groups; the number of these structures, in the SOP and SOB groups, were the highest. In SO group, differentiation ability to oocyte and granulosa cells was observed. Endothelial, oocyte, germ, and granulosa cell-like cells were specially seen in SOP and angiogenesis capability was more in SOB group. However, angiogenesis ability and differentiation to theca cell-like cells were more often in SOPB group. While none of the groups showed a significant difference in AMH level, estradiol levels were significantly higher in SOPB group. CONCLUSION: Integration of OSCs + PMSCs and those OSCs + BMSCs were more conducive to oogenesis.


Assuntos
Células-Tronco Mesenquimais , Ovário , Camundongos , Feminino , Animais , Humanos , Fator A de Crescimento do Endotélio Vascular , Oogênese , Matriz Extracelular
7.
Cryobiology ; 104: 32-41, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34808110

RESUMO

To find the gold standard out of three pre-established routine slow freezing (SF) methods, ovarian cortex tissues of nine transsexual individuals were cryopreserved and compared to each other, as well as the control (fresh) samples. Histological, genomic, and endocrinological effects of the SFs were assessed post-thawing and after a seven-day culture period. SF1 included 10% dimethyl-sulfoxide (Me2SO) in the base medium (BM), SF2 had 1.5 M/L ethylene-glycol (EG) and 0.1 M/L sucrose in the BM, and SF3 consisted of 6% Me2SO, 6% EG and 0.15 M/L sucrose in the BM. The cortical tissue strips went under a programmed cooling process and were stored in liquid nitrogen. Histological criteria (tissue damage and follicular quality), as well as gene expression levels, were assessed in the thawed and control tissues. Half of the thawed and control tissues were cultured for seven days and their histology, genetic profile, and hormonal status were examined as the reflection of the avascular tension effect. Post-thawing tissue damage was similar between all groups but significantly increased post-culture (P < 0.05). The percentages of high-quality follicles diminished in all SFs after thawing and culture (P < 0.05) except for the similarity of post-thawing SF3, compared to control. The genetic profile of the tissue after thawing and culture suggested quiescence/activation balance in SF1 and 2 and significant down-regulation in SF3, compared to the control specimens (P < 0.05). Post-thawing BAX:BCL2 was higher than control in SF1 and SF3 (P < 0.05), while this ratio in SF2 was similar to the control. However, after culture this ratio was similar to that of control in SF3 and diminished in SF1 and 2 (P < 0.05). The expression levels of gap-junction genes showed dramatic pre- and post-thawing fluctuations in all groups. After culture, estradiol in SF3 was significantly higher than SF1 and 2 (P < 0.05). In addition, progesterone in SF3 was similar to control but significantly lower in SF1 and 2 (P < 0.05). In conclusion, all SFs showed advantages and disadvantages, and the follicular quality and its function depend on the type of cryoprotectant and the speed of thawing. The effects of freezing/thawing continue to appear during the seven days of culture. According to the results of this study, SF3 seems to be more promising in keeping the follicles functional and safe from cell damage during culture.


Assuntos
Criopreservação , Crioprotetores , Criopreservação/métodos , Crioprotetores/farmacologia , Dimetil Sulfóxido/farmacologia , Etilenoglicol/farmacologia , Feminino , Congelamento , Humanos , Sacarose
8.
Antioxidants (Basel) ; 10(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445539

RESUMO

One important reason for male infertility is oxidative stress and its destructive effects on sperm structures and functions. The particular composition of the sperm membrane, rich in polyunsaturated fatty acids, and the easy access of sperm DNA to oxidative damage due to sperm cell specific cytologic and metabolic features (no cytoplasm left and cells unable to mount stress responses) make it the cell type in metazoans most susceptible to oxidative damage. In particular, oxidative damage to the spermatozoa genome is an important issue and a cause of male infertility, usually associated with single- or double-strand paternal DNA breaks. Various methods of detecting sperm DNA fragmentation have become important diagnostic tools in the prognosis of male infertility and such assays are available in research laboratories and andrology clinics. However, to date, there is not a clear consensus in the community as to their respective prognostic value. Nevertheless, it is important to understand that the effects of oxidative stress on the sperm genome go well beyond DNA fragmentation alone. Oxidation of paternal DNA bases, particularly guanine and adenosine residues, the most sensitive residues to oxidative alteration, is the starting point for DNA damage in spermatozoa but is also a danger for the integrity of the embryo genetic material independently of sperm DNA fragmentation. Due to the lack of a spermatozoa DNA repair system and, if the egg is unable to correct the sperm oxidized bases, the risk of de novo mutation transmission to the embryo exists. These will be carried on to every cell of the future individual and its progeny. Thus, in addition to affecting the viability of the pregnancy itself, oxidation of the DNA bases in sperm could be associated with the development of conditions in young and future adults. Despite these important issues, sperm DNA base oxidation has not attracted much interest among clinicians due to the lack of simple, reliable, rapid and consensual methods of assessing this type of damage to the paternal genome. In addition to these technical issues, another reason explaining why the measurement of sperm DNA oxidation is not included in male fertility is likely to be due to the lack of strong evidence for its role in pregnancy outcome. It is, however, becoming clear that the assessment of DNA base oxidation could improve the efficiency of assisted reproductive technologies and provide important information on embryonic developmental failures and pathologies encountered in the offspring. The objective of this work is to review relevant research that has been carried out in the field of sperm DNA base oxidation and its associated genetic and epigenetic consequences.

9.
Cell Tissue Res ; 381(3): 509-525, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32424509

RESUMO

This study investigates the effect of bone marrow (BM-MSCs) and visceral peritoneum (VP-MSCs)-derived mesenchymal stem cells on the transplanted ovary. VP-MSCs and BM-MSCs were obtained from green fluorescent protein-expressing mice (GFP+). Six- to eight-week-old female NMRI mice were divided into four experimental groups, autograft ovarian tissue fragments (AO), autograft ovarian tissue fragments encapsulated in fibrin-collagen hydrogel (AO-H), autograft ovarian tissue fragments encapsulated in fibrin-collagen hydrogel containing BM-MSCs (AO-HB) and autograft ovarian tissue fragments encapsulated in fibrin-collagen hydrogel containing VP-MSCs (AO-HP). Intact ovary (IO) was the control group. The estrous cycles resumption time was monitored and at the third estrous cycle, the blood samples and grafted ovaries were evaluated using hormonal, histological and gene expression analysis. Onset of estrous cycles, especially at the second cycle, was earlier in AO-HB and AO-HP groups than in the AO-H group (P < 0.05). Moreover, E2 and FSH levels in AO-HB and AO-HP groups were returned to those of the intact group. However, folliculogenesis was still retarded as compared with the IO group. The gene expression of theca (Lhcgr, Cyp17a1, Gli2, Gli3 and Ptch1), granulosa (Amh and Fshr), oocyte (Zp3 and Gdf9), germ cells (Stella and Prdm1), angiogenesis (VEGF and bFGF) and apoptosis (Bax/Bcl2 and Caspase3) markers was similar in both AO-HB and AO-HP groups. Expression of Amh, Fshr, Gdf9 and VEGF increased only in the AO-HP group whereas expression of Ptch1 increased only in the AO-HB group, as compared with the AO group (P < 0.05). In conclusion, BM-MSCs or VP-MSCs can improve ovarian autotransplantation in mice with no superiority over each other.


Assuntos
Ciclo Estral/metabolismo , Células-Tronco Mesenquimais/metabolismo , Ovário/metabolismo , Animais , Feminino , Células-Tronco Mesenquimais/citologia , Camundongos
10.
Cell J ; 21(4): 479-493, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31376330

RESUMO

OBJECTIVE: Testing novel biomaterials for the three dimensional (3D) culture of ovarian follicles may ultimately lead to a culture model which can support the integrity of follicles during in vitro culture (IVC). The present study reports the first application of a chitosan (CS) hydrogel in culturing mouse preantral follicles. MATERIALS AND METHODS: In this interventional experiment study, CS hydrogels with the concentrations of 0.5, 1, and 1.5% were first tested for fourier transform infrared spectroscopy (FT-IR), Compressive Strength, viscosity, degradation, swelling ratio, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity and live/dead assay. Thereafter, mouse ovarian follicles were encapsulated in optimum concentration of CS (1%) and compared with those in alginate hydrogel. The follicular morphology, quality of matured oocyte and steroid secretion in both CS and alginate were assessed by enzyme-linked immunosorbent assay (ELISA). The expression of folliculogenesis, endocrine, and apoptotic related genes was also evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) and compared with day that in 0. RESULTS: The rates of survival, and diameter of the follicles, secretion of estradiol, normal appearance of meiotic spindle and chromosome alignment were all higher in CS group compared with those in alginate group (P≤0.05). The expression of Cyp19a1 and Lhcgr in CS group was significantly higher than that of the alginate group (P≤0.05). CONCLUSION: The results showed that CS is a permissive hydrogel and has a beneficial effect on encapsulation of ovarian follicle and its further development during 3D culture.

11.
Cell J ; 22(2): 227-235, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31721538

RESUMO

OBJECTIVE: Decellularized tissue scaffolds provide an extracellular matrix to control stem cells differentiation toward specific lineages. The application of mesenchymal stem cells for artificial ovary production may enhance ex vivo functions of the ovary. On the other hand, the scaffold needs interaction and integration with cells. Thus, the development of ovarian engineered constructs (OVECs) requires the use of efficient methods for seeding of the cells into the ovarian and other types of scaffolds. The main goal of the present study was to develop an optimized culture system for efficient seeding of peritoneum mesenchymal stem cells (PMSCs) into human decellularized ovarian scaffold. MATERIALS AND METHODS: In this experimental study, three methods were used for cellular seeding including rotational (spinner flask) and static (conventional and injection) seeding cultures. OVECs were evaluated with Hematoxylin and Eosin staining and viability analyses for the seeded PMSCs. Then, immunohistochemistry analysis was performed using the best method of cellular seeding for primordial germ cell-like cells, mesenchymal stem cells and proliferation markers. Stereology analysis was also performed for the number of penetrated cells into the OVECs. RESULT: Our results showed that rotational seeding increases the permeability of PMSCs into the scaffold and survival rate of the seeded PMSCs, comparing to the other methods. On the other hand, rotationally seeded PMSCs had a more favorable capability of proliferation with Ki67 expression and differentiation to ovarian specific cells with expression of primordial germ cell line markers without mesenchymal stem cells markers production. Furthermore, stereology showed a more favorable distribution of PMSCs along the outer surfaces of the OVEC with further distribution at the central part of the scaffold. The average total cell values were determined 2142187 cells/mm3 on each OVEC. CONCLUSION: The rotational seeding method is a more favorable approach to cell seeding into ovarian decellularized tissue than static seeding.

12.
Int J Fertil Steril ; 13(4): 330-338, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31710195

RESUMO

BACKGROUND: In the present study, the effects of alginate (ALG) concentration and ovarian cells (OCs) on the development and function of follicles were simultaneously evaluated. MATERIALS AND METHODS: In the first step of this experimental study, preantral follicles were isolated from the ovaries of 2-week-old mice, encapsulated in the absence or presence of OCs in 0.5, 0.75 and 1% ALG hydrogels, and cultured for 14 days. The morphology, diameter, survival and antrum formation rates of the follicles and the maturation of the oocytes were evaluated during culture. In the second step, preantral follicles were cultured in the best chosen ALG concentration, in both the absence and presence of OCs. Following these steps, the amount of DNA fragmentation, the expression levels of connexin 37 and connexin 43 proteins, the secretion levels of estradiol, progesterone and androstenedione by the follicles and the quality of mature (MII) oocytes were assessed. RESULTS: Our data revealed that in the absence of OCs, follicles of 0.5% group showed a higher survival rate than the 0.75 and 1% groups (71.87 vs. 52.52 and 40%, respectively, P<0.05). Nonetheless, the antrum formation rate of the 1% group was higher and its oocyte degeneration rate was lower than that in the other groups. Furthermore, it was observed that co-culture of follicles with OCs relatively increased the follicle diameter, survival, antrum formation, and germinal vesicle (GV) to GV break down (GVBD)/MII transition rates. At last, the comparison of 0.5%-OCs and 0.5%+OCs groups indicated that the co-culture condition resulted in more progesterone production (1.8 ± 0.2 vs. 3.2 ± 0.4 ng/ml, respectively, P<0.05) and also decreased oocytes' cortical granule abnormalities (100 vs. 40% for 0.5%- OCs and 0.5%+OCs groups, respectively). CONCLUSION: The present study revealed that 0.5% ALG hydrogel is relatively suitable for preantral follicle culture, and in the presence of OCs, it mimics the natural ovarian condition better than the higher concentrations of ALG hydrogel.

13.
Growth Factors ; 37(3-4): 178-189, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31646909

RESUMO

The in-vitro development of primordial follicles is critical for improving mammalian fertility and wildlife conservation. This study aimed to optimise the effective doses of bpV (HOpic) and stem cell factor (SCF) for the in-vitro activation of sheep primordial follicles. To do this, sheep ovarian cortex was treated with bpV (1.5, 15, and 150 µM) and SCF (50 and 100 ng/ml). Follicular count indicated that 15 µM bpV and 100 ng/ml SCF significantly increased normal primary follicles compared to other groups (p < 0.05). Also, a significant downregulation of P53 and PTEN, as well as the increased expression of PI3K was observed. The in-vitro maturation was more pronounced when the fragmented tissues were co-treated with selected doses of bpV and SCF. In conclusion, the combination of 15 µM bpV and 100 ng/ml SCF was the most effective treatment strategy for the activation and survival of primordial follicles in sheep ovarian fragments.


Assuntos
Folículo Ovariano/crescimento & desenvolvimento , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Fator de Células-Tronco/farmacologia , Compostos de Vanádio/farmacologia , Animais , Células Cultivadas , Feminino , Fosfatidilinositol 3-Quinase/biossíntese , Ovinos , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/antagonistas & inibidores
14.
Zygote ; 27(4): 214-218, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31322496

RESUMO

In assisted reproductive technology (ART) programmes, approximately 10% of infertile patients have at least two or three repeated implantation failures (RIFs) after an in vitro fertilization (IVF) protocol. Successful implantation mainly depends on local immune tolerance mechanisms involving a spectrum of cytokines, interleukins and growth factors. The latter have played pivotal roles in the recruitment of immune cells (and notably T-lymphocyte cells). In total, 250 couples participating in frozen-thawed embryo transfer programme were incorporated in a randomized clinical trial (peripheral blood mononuclear cells (PBMC) subgroup: n=122; control subgroup: n=128). In the PBMC group, a blood sample was collected 5 days before the scheduled frozen-thawed embryo transfer; PBMCs were isolated using Ficoll separation and then cultured for 72 h. Two days prior to embryo transfer, 0.4 ml of cultured PBMCs were transferred into the patient's uterus. Although the clinical pregnancy rate was higher in the PBMC group (34.4%) than in the control group (23.4%), this difference was not statistically significant (P=0.05 in a chi-squared test). Nevertheless, when we limited the analysis to patients with ≥3 RIFs (n=138), there was a significant difference in the clinical pregnancy rate between the PBMC group (38.6%) and the control group (19.7%; P=0.01). Our results imply that PBMC transfer can be part of effective fertility treatment for patients with RIF.


Assuntos
Implantação do Embrião/imunologia , Transferência Embrionária/estatística & dados numéricos , Endométrio/imunologia , Imunomodulação/imunologia , Inseminação/imunologia , Leucócitos Mononucleares/imunologia , Adulto , Células Cultivadas , Criopreservação , Transferência Embrionária/métodos , Endométrio/metabolismo , Feminino , Fertilização in vitro/métodos , Fertilização in vitro/estatística & dados numéricos , Humanos , Leucócitos Mononucleares/transplante , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde/métodos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Gravidez , Taxa de Gravidez , Estudos Prospectivos , Falha de Tratamento , Adulto Jovem
15.
Mater Sci Eng C Mater Biol Appl ; 102: 670-682, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31147040

RESUMO

Since there is dearth of practical ways to obtain mature follicles from cryopreserved or native ovarian tissues, especially in patients suffering from ovarian dysfunction, tissue engineering may help in restoring ovarian function and/or fertility. In the present study, the effects of sodium dodecyl sulfate (SDS) and sodium hydroxide (NaOH) on the decellularization of ovarian tissues were studied in order to ascertain their suitability in creating suitable bioscaffolds. Cells were removed from the ovarian tissues of mouse, sheep and human. The samples were distributed among three groups, viz., control (not treated), SDS and NaOH treated. Qualitative histological evaluations, quantitative assessments (nuclear contents, collagen and glycosaminoglycan), immunohistochemistry staining (for laminin, fibronectin and Collagen I), cell viability and scanning electron microscopic (SEM) assays were performed for all experimental groups. Finally, suspensions of mouse ovarian cells were injected into human NaOH treated scaffolds and subsequently auto-transplanted to ovariectomized mice. H&E and IHC staining (GDF-9) were performed on human recellularized NaOH treated scaffolds 1 month after auto-transplantation. Although histological studies and quantitative evaluations confirmed the successful decellularization and presence of key factors in ovarian scaffolds under both treatment methods, NaOH showed more interesting outcomes. Cell metabolic activity in sheep and human ovaries treated with NaOH was statistically (p < 0.05) higher than for SDS treated samples after 72 h. Moreover, spherical associations with cuboidal cells in human NaOH treated scaffolds were observed and this follicular reconstruction was also confirmed by GDF-9. NaOH was found to be more suitable than SDS for the decellularization of ovarian tissues and it supports follicular reconstruction better than SDS. This is a valuable finding in tissue engineering research and can help in the creation of appropriate ovarian bioscaffolds.


Assuntos
Ovário/citologia , Engenharia Tecidual/métodos , Adolescente , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Camundongos , Ovário/ultraestrutura , Ovinos , Alicerces Teciduais/química , Adulto Jovem
16.
J Cell Physiol ; 234(7): 10148-10156, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30417361

RESUMO

Fertility preservation of prepubertal girls subjected to invasive cancer therapy necessitates defining protocols for activation of isolated primordial follicles. Granulosa (GCs) and cumulus cells (CCs) play pivotal role in oocyte development. Although GCs and CCs share some similarities, they differ in growth factors production. The current study was conducted to evaluate the effects of GCs, CCs and their conditioned media on mice primordial follicles activation. One-day-old mice ovaries were subjected to 6-day culture with base medium (BM), GC conditioned medium (GCCM), GC coculture (GCCC), CC conditioned medium (CCCM) or CC coculture (CCCC). Follicular growth and primordial to primary follicle transition was observed during 6-day culture, and follicular activation rate tended to be greater in GCCM than other groups (0.05


Assuntos
Meios de Cultivo Condicionados/farmacologia , Células do Cúmulo/metabolismo , Preservação da Fertilidade/métodos , Células da Granulosa/metabolismo , Folículo Ovariano/efeitos dos fármacos , Animais , Feminino , Camundongos , Folículo Ovariano/metabolismo , PTEN Fosfo-Hidrolase/metabolismo
17.
Reprod Sci ; 26(8): 1139-1145, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30453833

RESUMO

BACKGROUND: Intraindividual copy number variation (CNV) origin is largely unknown. They might be due to aging and/or common genome instability at the preimplantation stage while contribution of preimplantation in human intraindividual CNVs occurrence is unknown. To address this question, we investigated mosaicism and its origin in the fetuses of natural conception. METHODS: We studied normal fetuses following therapeutic abortion due to maternal indications. We analyzed the genome of 22 tissues of each fetus by array comparative genomic hybridization for intraindividual CNVs. Each tissue was studied in 2 microarray experiments; the reciprocal aberrations larger than 40 Kb, identified by comparing tissues of each fetus, were subsequently validated using quantitative polymerase chain reaction. RESULTS: Through intraindividual comparison, frequency of reciprocal events varied from 2 to 9. According to the distribution pattern of the frequent CNV in derivatives of different germ layers, we found that its origin is early development including preimplantation, whereas CNVs with low frequency have occurred in later stages. Shared CNVs in both fetuses were belonged to thymus and related to the functional role of genes located in these CNVs. CONCLUSIONS: The origin of some of fetal CNVs is preimplantation stage. Each organ might inherit CNVs with an unpredictable pattern due to the extensive cell mixing/migration in embryonic development.


Assuntos
Variações do Número de Cópias de DNA , Feto , Variação Genética , Mosaicismo , Hibridização Genômica Comparativa , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Gravidez
18.
Cryobiology ; 84: 82-90, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30244698

RESUMO

Vitrification affects fertilization ability and developmental competence of mammalian oocytes. This effect may be more closely associated with an intracellular calcium rise induced by cryoprotectants. The present study aimed to assess whether addition of Ethylene Glycol Tetraacetic acid (EGTA) to vitrification solution could improve quality and developmental competence of in vitro matured ovine oocytes. Vitrified groups were designed according to the presence or absence of EGTA and/or calcium in base media, including: mPB1+ (modified PBS with Ca2+), mPB1- (modified PBS without Ca2+), mPB1+/EGTA (mPB1+ containing EGTA), mPB1-/EGTA (mPB1- containing EGTA). In vitro development, numerical chromosome abnormalities, hardening of zona pellucida, mitochondrial distribution and function of viable oocytes were evaluated and compared between groups. Quality of blastocysts was assessed by differential and TUNEL staining. Also, mRNA expression levels of six candidate genes (KIF11, KIF2C, CENP-E, KIF20A, KIF4A and KIF2A), were quantitatively evaluated by RT-PCR. Our results showed that calcium-free vitrification and EGTA supplementation can significantly increase the percentage of normal haploid oocytes and maintain normal distribution and function of mitochondria in vitrified ovine oocytes, consequently improving developmental rate after in vitro fertilization. qRT-PCR analysis showed no significant difference in mRNA expression levels of kinesin genes between vitrified and fresh oocytes. Also, the presence of calcium in vitrification solution significantly increased zona hardening. In conclusion, we have shown for the first time that supplementation of vitrification solution with EGTA, as a calcium chelator, improved the ability of vitrified ovine oocytes to preserve mitochondrial distribution and function, as well as normal chromosome segregation.


Assuntos
Criopreservação/métodos , Crioprotetores/farmacologia , Ácido Egtázico/farmacologia , Vitrificação , Animais , Quelantes de Cálcio/farmacologia , Feminino , Fertilização in vitro , Técnicas de Maturação in Vitro de Oócitos , Oócitos/efeitos dos fármacos , Ovinos , Carneiro Doméstico
19.
J Cell Biochem ; 119(12): 9853-9865, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30132968

RESUMO

In this study, we have characterized the human theca stem cells (hTSCs) and their differentiation into human theca progenitor cells (hTPCs). hTSCs were isolated from the theca layer of small antral follicles (3-5 mm in size). Alkaline phosphatase activity, cell cycle status, and cell surface markers were evaluated in hTSCs. The differentiation potential of these cells was investigated via differentiation of hTSCs into adipocyte-, osteocyte-, and chondrocyte-like cells. The cells also differentiated into hTPCs. The hTSCs were morphologically similar to human fibroblast cells (hFCs). Some of the cells were positive for alkaline phosphatase activity. The expression of OCT4 in hTSCs was significantly higher than that of human bone marrow mesenchymal stem cells (hBMSCs) and hFCs. To determine the type of OCT4 (isoform A or B), RT PCR was performed. The data showed that OCT-4A was expressed in hBMSCs and hTSCs but immunofluorescence analyses using the OCT-4A-specific and OCT4 antibodies did not show OCT-4A protein. In addition, cell cycle status showed that the number of hTSCs in the S phase was significantly higher than that of hFCs. CD29, CD44, CD73, CD90, and CD105 were present in hTSCs. Osteogenic, adipogenic, and chondrogenic differentiation was confirmed by cytochemical staining and lineage-specific transcripts. Our results showed that specific Dulbecco modified Eagle medium F12 culture medium results in the presence of hTPC markers. hTPCs displayed lipid droplets, appropriate gene expression, and secreted dehydroepiandrosterone and estradiol. hTSCs have the ability to differentiate into mesenchymal lineages and hTPCs. This study may provide a novel in vitro model for further investigation of theca cell maturation and differentiation.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco/fisiologia , Células Tecais , Adipogenia , Adulto , Células Cultivadas , Condrogênese , Feminino , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais , Osteogênese , Células-Tronco/metabolismo , Adulto Jovem
20.
Cytotechnology ; 70(1): 397-413, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29264678

RESUMO

The procedure of obtaining qualified endothelial progenitor cells (EPCs) is still unclear and there has been some controversy on their biological properties and time of emergence. In this study, we used long-term culture of Adipose Derived Stem Cells (ADSCs) in an endothelial induction medium to obtain endothelial progenitor-like cells, and investigated the features of a few surface markers and the physiologic functions of the cells produced. In order to achieve our aim, rat ADSCs were isolated and cultured in an endothelial basal medium (EBM2), supplemented with an endothelial growth medium (EGM2). The cells were cultured 1 week for short-time, 2 weeks for mid-time, and 3 weeks for long-time cultures. Morphological changes were monitored by phase contrast and electron microscopy. The expressions of a few endothelial progenitor cells markers were analyzed by real-time RT-PCR. Low-density lipoprotein uptake and lectin binding assay were also performed for functional characterization. After induction, ADSCs showed changes in morphology from spindle-shaped in the first week to cobblestone-shaped during the next 2 weeks. Then, endothelial cell phenotype was defined by the presence of Weibel-Palade bodies in the cytoplasm and tube formation, without the use of Matrigel in the third week. In keeping with gene expression analysis, VEGFR-2 showed significant expression during early stages of endothelial differentiation for up to 3 weeks. A significantly increased expression of Tie2 was observed on day 21. Likewise, VE-Cadherin, CD34, CD133, WVF and CD31 were not significantly expressed within the same period of time. Endothelial differentiated cells also showed little LDL uptake and little to no lectin binding during the first 2 weeks of induction. However, high LDL uptake and lectin binding were observed in the third week. It appears that long term culture of ADSCs in EGM2 leads to significantly increased expression of some endothelial progenitor cells markers, strong DiI-ac-LDL uptake, lectin binding and tube-like structure formation in endothelial differentiated cells. Therefore, selection of an appropriate culture time and culture medium is crucial for establishing an efficient route to obtain sufficient numbers of EPCs with optimized quantity and quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA