Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Environ Res ; 96(1): e10967, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38154789

RESUMO

The intensification of pharmaceutical use globally has led to an increase in the number of water bodies contaminated by drugs, and an effective strategy must be developed to address this issue. In this work, several biochars produced from Miscanthus straw pellets (MSP550, MSP700) and wheat straw pellets (WSP550, WSP700) at 550 and 700°C, respectively, were selected as adsorbents for removing various pharmaceuticals, such as pemetrexed (PEME), sulfaclozine (SCL), and terbutaline (TBL), from the aqueous phase. The biochar characterizations (physicochemical properties, textural properties, morphological structures, and zeta potentials) and adsorptive conditions (contact times, temperatures, and pH effect) were investigated. The infrared and Raman spectra of biochars before and after pharmaceutical adsorption, as well as quantum chemical computations, were carried out to explore the adsorption mechanisms. The results showed that the general adsorption abilities of biochars for pharmaceuticals were in the order of WSP700 > MSP700 > MSP550 > WSP550. Both the higher drug concentration and higher temperature improved biochar adsorption. By decreasing the pH, the adsorption amounts increased for PEME and SCL. However, TBL exhibited the best adsorption at pH 7, whereas a weakening of affinity occurred at lower or higher pH values. Electrostatic interactions and hydrogen bonding were the main adsorptive mechanisms between all biochars and pharmaceuticals. π-π interactions played a role in the adsorption process of low-temperature-prepared biochars (MSP550 and WSP550). This work can provide new insights into the control of pharmaceuticals from water with low-cost adsorbents. PRACTITIONER POINTS: Use of biochars for pharmaceuticals removal from aqueous phase. Characterization of biochars : physical and chemical properties, textural and surface properties. Simulation calculation for characterization of pharmaceuticals. Kinetic studies of pharmaceuticals adsorption on biochars. DRIFTS and Raman analysis for the understanding of adsorption process.


Assuntos
Carvão Vegetal , Água , Cinética , Carvão Vegetal/química , Preparações Farmacêuticas , Adsorção
2.
Ind Eng Chem Res ; 62(34): 13324-13339, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38356643

RESUMO

A multiscale strategy was used to conceptually design and economically analyze a scalable and sustainable process for dissolving and regenerating keratin from chicken feathers by using a sodium acetate-urea deep eutectic solvent as the reacting media. In this study, the recovery and recycling of the solvent were also considered. Moreover, molecular modeling of the solvent, keratin and its derivatives, property estimation of the corresponding mixtures, and simulation of the different process alternatives proposed, including the equipment sizing, estimation of energy needs, and economic analysis were presented. A quasi-planar cluster governed by H-bond interactions resulted in the most stable configuration of the deep eutectic solvent. Molecular models having molecular weights higher than 1.400 g/mol were created to represent the keratin species, where the most abundant amino acids in the feathers were included and conveniently ordered in the chain. Property estimations performed with the conductor-like screening model-real solvent succeeded in describing the main features of the interactions between the keratin derivatives and the solvents used. The process analysis performed on several alternatives showed that the process is technically and economically viable at the industrial scale, the costs being strongly dependent on the excess of both the solvent used to dissolve keratin and the water added for its regeneration. Several options to improve the process and reduce the costs are discussed.

3.
J Hazard Mater ; 437: 129316, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35709621

RESUMO

A series of Y-modified cobalt oxides with various Y/(Co+Y) molar ratios (0.25 %, 0.5 %, 1 %, 3 % and 5 %) were prepared to study the effect of Y content on toluene and propane combustion. The characterization of the catalysts revealed that proper Y incorporation resulted in smaller crystallite sizes, larger specific surface areas, more oxygen vacancies and weaker Co-O bonds. As such, the Y-modified Co3O4 showed enhanced low-temperature reducibility, boosted oxygen mobility and better catalytic activity. However, excess Y (> 1 %) aggregates on the surface of Co3O4 and forms yttrium carbonate species, hindering the catalyst activity. A volcano-type relationship between the Y content and the catalytic activity was established. The optimal catalyst 1 % Y-Co (with Y/(Co+Y) molar ratio of 1 %) exhibited toluene oxidation rate of 24 nmol g-1 s-1 at 220 °C and propane oxidation rate of 69 nmol g-1 s-1 at 180 °C. Besides, 1 % Y-Co presented perfect cycling stability and long-term durability in propane oxidation. Regarding its low cost, high efficiency and good stability, 1 % Y-Co is a promising catalyst for the practical elimination of hydrocarbon emissions.

4.
J Colloid Interface Sci ; 431: 105-11, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24996018

RESUMO

Gold-containing poly(urea-formaldehyde) microparticles were prepared by the in situ polymerization method using a series of stabilization agents with different chemical nature. The effects of cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA) and tetrakis(hydroxymethyl)phosphonium chloride (THPC) on the morphology, the particle size of encapsulated gold, the gold particle size distribution and the encapsulation efficiency were investigated by using scanning electron microscopy, X-ray diffraction and atomic absorption analyses. The chemical nature of stabilizer had a marked influence on both the encapsulated gold particle size and the encapsulation efficiency. Both gold particle size and gold encapsulation efficiency increased when decreasing the stabilizer polarity number. All the microparticles here prepared were tested in the liquid phase selective oxidation of glycerol. The glycerol conversion increased and the glyceric acid selectivity decreased when decreasing gold particle sizes. Results showed that use of stabilizers with hydrophobic surfaces enhanced the selectivity to C3 products in the resulting catalysts. On the other hand, the use of stabilizers with hydrophilic surfaces increased the C-C bond cleavage products in the resulting catalysts.


Assuntos
Glicerol/química , Ouro/química , Nanopartículas Metálicas/química , Catálise , Oxirredução , Tamanho da Partícula
6.
J Colloid Interface Sci ; 380(1): 173-81, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22682327

RESUMO

Nickel supported fishbone carbon nanofibers (CNFs) have been prepared by vacuum impregnation (VI) and homogeneous deposition-precipitation (HDP) methods with different nickel loadings (ca. 5%, 9% and 12%) with the aim to study the influence of the metal incorporation method and the nickel loading in the catalytic activity of gas-phase hydrogenation of 2-tert-butylphenol (2-TBP). Moreover, the influence of the nature of the support was also studied by preparing nickel catalysts supported on other carbon (active carbon (AC) and graphite (G)) and non-carbonaceous materials (alumina (AL) and yttria-stabilized zirconia (YSZ)). Different techniques were employed to characterize both the supports and the final Ni catalysts: atomic absorption spectrometry, N(2) adsorption-desorption analysis, temperature-programed reduction (TPR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Catalytic results revealed that the nickel particle size and support properties affected directly to both the catalytic activity of hydrogenation of 2-TBP, and the rate of secondary reactions such as cis to trans isomerization and 2-tert-butylcyclohexanone (2-TBCN) hydrogenation.

7.
J Colloid Interface Sci ; 336(1): 226-34, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19419731

RESUMO

In this study, highly porous carbon nanofibers (CNFs) were prepared by chemical activation in order to develop promising energy storage materials. The activation was performed at a temperature of 850 degrees C by using different metal hydroxides as the activating agents. Pore structures of the CNFs were analyzed using N(2)/77K adsorption isotherms. The presence of oxygen groups was analyzed by means of acid-base titration. The structural order (crystallinity) of the materials was studied by XRD and TGA analysis and the morphology and diameter distributions by means of TEM. The use of hydroxide of alkaline metals of low melting and boiling points (K, Rb, and Cs) led to the best results of porosity development. On the contrary, the pore opening was lower if the alkaline metal had a high boiling point (Na) or when alkali earth cations were used as activating agents. After the activation, the porous CNFs showed a decrease in diameter and scratches on their surfaces, as a consequence of the surface oxidation and opening of the graphitic layers, respectively. It was found that the specific surface area of the porous CNFs prepared using KOH and RbOH was more than 400 and 280 m(2) g(-1), respectively, without loss of their fiber shape.

8.
J Colloid Interface Sci ; 336(2): 712-22, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19410256

RESUMO

Carbon nanofibers (CNFs) were activated with different activating agents (KOH, KHCO(3) and K(2)CO(3)). The effects of different activations conditions, including type of protector gas (He, Ar and N(2)) and helium flow rate on the properties of activated carbon nanofibers were studied. The structural changes in activated CNFs were investigated using the following characterization techniques: N(2) adsorption isotherms at 77K, XRD, temperature-programmed desorption of hydrogen, TEM, TPO and elemental composition. The results showed that the surface area increased by a factor of 3.3, 2.0 and 1.8 referred to the parent CNFs after the treatment with KOH, K(2)CO(3) and KHCO(3), respectively. In addition, KOH generated a greater pore volume than the other activating agents; micropores were mainly generated during the process. Finally, different carrier gases were added during the activation in order to study their influence on the pore opening behavior of CNFs. It was found that the activation degree increased in the following order: Ar

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA