Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Plant Biotechnol J ; 20(7): 1327-1345, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35306726

RESUMO

Soybean oil is one of the most consumed vegetable oils worldwide. Genetic improvement of its concentration in seeds has been historically pursued due to its direct association with its market value. Engineering attempts aiming to increase soybean seed oil presented different degrees of success that varied with the genetic design and the specific variety considered. Understanding the embryo's responses to the genetic modifications introduced, is a critical step to successful approaches. In this work, the metabolic and transcriptional responses to AtWRI1 and AtDGAT1 expression in soybean seeds were evaluated. AtWRI1 is a master regulator of fatty acid (FA) biosynthesis, and AtDGAT1 encodes an enzyme catalysing the final and rate-limiting step of triacylglycerides biosynthesis. The events expressing these genes in the embryo did not show an increase in total FA content, but they responded with changes in the oil and carbohydrate composition. Transcriptomic studies revealed a down-regulation of genes putatively encoding for oil body packaging proteins, and a strong induction of genes annotated as lipases and FA biosynthesis inhibitors. Novel putative AtWRI1 targets, presenting an AW-box in the upstream region of the genes, were identified by comparison with an event that harbours only AtWRI1. Lastly, targeted metabolomics analysis showed that carbon from sugar phosphates could be used for FA competing pathways, such as starch and cell wall polysaccharides, contributing to the restriction in oil accumulation. These results allowed the identification of key cellular processes that need to be considered to break the embryo's natural restriction to uncontrolled seed lipid increase.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Metabolismo dos Carboidratos/genética , Desenvolvimento Embrionário , Regulação da Expressão Gênica de Plantas/genética , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Sementes/genética , Sementes/metabolismo , Glycine max/genética , Glycine max/metabolismo , Fatores de Transcrição/genética
2.
Mol Breed ; 41(4): 27, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37309353

RESUMO

Composition of fatty acids (FAs) in soybean seed is important for the quality and uses of soybean oil. Using gas chromatography, we have measured soybean FAs profiles of 621 soybean accessions (maturity groups I through IV) grown in five different environments; Columbus, OH (2015), Wooster, OH (2014 and 2015), Plymouth, NC (2015), and Urbana, IL (2015). Using publicly available SoySNP50K genotypic data and the FA profiles from this study, a genome-wide association analysis was completed with a compressed mixed linear model to identify 43 genomic regions significantly associated with a fatty acid at a genome wide significance threshold of 5%. Among these regions, one and three novel genomic regions associated with palmitic acid and stearic acid, respectively, were identified across all five environments. Additionally, nine novel environment-specific FA-related genomic regions were discovered providing new insights into the genetics of soybean FAs. Previously reported FA-related loci, such as FATB1a, SACPD-C, and KASIII, were also confirmed in this study. Our results will be useful for future functional studies and marker-assisted breeding for soybean FAs. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01216-1.

3.
Plant Genome ; 14(1): e20063, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33200586

RESUMO

Phytophthora sojae causes Phytophthora root and stem rot of soybean and has been primarily managed through deployment of qualitative Resistance to P. sojae genes (Rps genes). The effectiveness of each individual or combination of Rps gene(s) depends on the diversity and pathotypes of the P. sojae populations present. Due to the complex nature of P. sojae populations, identification of more novel Rps genes is needed. In this study, phenotypic data from previous studies of 16 panels of plant introductions (PIs) were analyzed. Panels 1 and 2 consisted of 448 Glycine max and 520 G. soja, which had been evaluated for Rps gene response with a combination of P. sojae isolates. Panels 3 and 4 consisted of 429 and 460 G. max PIs, respectively, which had been evaluated using individual P. sojae isolates with complex virulence pathotypes. Finally, Panels 5-16 (376 G. max PIs) consisted of data deposited in the USDA Soybean Germplasm Collection from evaluations with 12 races of P. sojae. Using these panels, genome-wide association (GWA) analyses were carried out by combining phenotypic and SoySNP50K genotypic data. GWA models identified two, two, six, and seven novel Rps loci with Panels 1, 2, 3, and 4, respectively. A total of 58 novel Rps loci were identified using Panels 5-16. Genetic and phenotypic dissection of these loci may lead to the characterization of novel Rps genes that can be effectively deployed in new soybean cultivars against diverse P. sojae populations.


Assuntos
Phytophthora , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Glycine max/genética
4.
Theor Appl Genet ; 132(6): 1639-1659, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30806741

RESUMO

KEY MESSAGE: Genomic regions associated with seed protein, oil and amino acid contents were identified by genome-wide association analyses. Geographic distributions of haplotypes indicate scope of improvement of these traits. Soybean [Glycine max (L.) Merr.] protein and oil are used worldwide in feed, food and industrial materials. Increasing seed protein and oil contents is important; however, protein content is generally negatively correlated with oil content. We conducted a genome-wide association study using phenotypic data collected from five environments for 621 accessions in maturity groups I-IV and 34,014 markers to identify quantitative trait loci (QTL) for seed content of protein, oil and several essential amino acids. Three and five genomic regions were associated with seed protein and oil contents, respectively. One, three, one and four genomic regions were associated with cysteine, methionine, lysine and threonine content (g kg-1 crude protein), respectively. As previously shown, QTL on chromosomes 15 and 20 were associated with seed protein and oil contents, with both exhibiting opposite effects on the two traits, and the chromosome 20 QTL having the most significant effect. A multi-trait mixed model identified trait-specific QTL. A QTL on chromosome 5 increased oil with no effect on protein content, and a QTL on chromosome 10 increased protein content with little effect on oil content. The chromosome 10 QTL co-localized with maturity gene E2/GmGIa. Identification of trait-specific QTL indicates feasibility to reduce the negative correlation between protein and oil contents. Haplotype blocks were defined at the QTL identified on chromosomes 5, 10, 15 and 20. Frequencies of positive effect haplotypes varied across maturity groups and geographic regions, providing guidance on which alleles have potential to contribute to soybean improvement for specific regions.


Assuntos
Aminoácidos/metabolismo , Genoma de Planta , Estudo de Associação Genômica Ampla , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Óleo de Soja/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Desequilíbrio de Ligação , Fenótipo , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Glycine max/genética
5.
Int J Mol Sci ; 18(6)2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28587169

RESUMO

Soybean [Glycine max (L.) Merr.] is a valuable and nutritious crop in part due to the high protein meal and vegetable oil produced from its seed. Soybean producers desire cultivars with both elevated seed protein and oil concentrations as well as specific amino acid and fatty acid profiles. Numerous studies have identified quantitative trait loci (QTLs) associated with seed composition traits, but validation of these QTLs has rarely been carried out. In this study, we have collected information, including genetic location and additive effects, on each QTL for seed contents of protein and oil, as well as amino acid and fatty acid compositions from over 80 studies. Using BioMercator V. 4.2, a meta-QTL analysis was performed with genetic information comprised of 175 QTLs for protein, 205 QTLs for oil, 156 QTLs for amino acids, and 113 QTLs for fatty acids. A total of 55 meta-QTL for seed composition were detected on 6 out of 20 chromosomes. Meta-QTL possessed narrower confidence intervals than the original QTL and candidate genes were identified within each meta-QTL. These candidate genes elucidate potential natural genetic variation in genes contributing to protein and oil biosynthesis and accumulation, providing meaningful information to further soybean breeding programs.


Assuntos
Glycine max/química , Glycine max/genética , Óleos de Plantas/análise , Proteínas de Plantas/análise , Locos de Características Quantitativas , Sementes/química , Sementes/genética , Aminoácidos/análise , Mapeamento Cromossômico , Ácidos Graxos/análise , Estudos de Associação Genética , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/metabolismo
6.
Front Plant Sci ; 4: 176, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23761803

RESUMO

Understanding several modes of duplication contributing on the present genome structure is getting an attention because it could be related to numerous agronomically important traits. Since soybean serves as a rich protein source for animal feeds and human consumption, breeding efforts in soybean have been directed toward enhancing seed protein content. The publicly available soybean sequences and its genomically featured elements facilitate comprehending of quantitative trait loci (QTL) for seed protein content in concordance with homeologous regions in soybean genome. Although parts of chromosome (Chr) 20 and Chr 10 showed synteny, QTLs for seed protein content present only on Chr 20. Using comparative analysis of gene contents in recently duplicated genomic regions harboring QTL for protein/oil content on Chrs 20 and 10, a total of 27 genes are present in duplicated regions of both Chrs. Notably, 4 tandem duplicates of the putative homeobox protein 22 (HB22) are present only on Chr 20 and this Medicago truncatula homolog expressed in endosperm at seed filling stage. These tandem duplicates could contribute on the protein/oil QTL of Chr 20. Our study suggests that non-shared gene contents within the duplicated genomic regions might lead to absence/presence of QTL related to protein/oil content.

7.
Theor Appl Genet ; 126(8): 2017-27, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23674132

RESUMO

Mungbean [Vigna radiata (L.) Wilczek], a self-pollinated diploid plant with 2n = 22 chromosomes, is an important legume crop with a high-quality amino acid profile. Sequence variation at the whole-genome level was examined by comparing two mungbean cultivars, Sunhwanokdu and Gyeonggijaerae 5, using Illumina HiSeq sequencing data. More than 40 billion bp from both mungbean cultivars were sequenced to a depth of 72×. After de novo assembly of Sunhwanokdu contigs by ABySS 1.3.2 (N50 = 9,958 bp), those longer than 10 kb were aligned with Gyeonggijaerae 5 reads using the Burrows-Wheeler Aligner. SAMTools was used for retrieving single nucleotide polymorphisms (SNPs) between Sunhwanokdu and Gyeonggijaerae 5, defining the lowest and highest depths as 5 and 100, respectively, and the sequence quality as 100. Of the 305,504 single-base changes identified, 40,503 SNPs were considered heterozygous in Gyeonggijaerae 5. Among the remaining 265,001 SNPs, 65.9 % (174,579 cases) were transitions and 34.1 % (90,422 cases) were transversions. For SNP validation, a total of 42 SNPs were chosen among Sunhwanokdu contigs longer than 10 kb and sharing at least 80 % sequence identity with common bean expressed sequence tags as determined with est2genome. Using seven mungbean cultivars from various origins in addition to Sunhwanokdu and Gyeonggijaerae 5, most of the SNPs identified by bioinformatics tools were confirmed by Sanger sequencing. These genome-wide SNP markers could enrich the current molecular resources and might be of value for the construction of a mungbean genetic map and the investigation of genetic diversity.


Assuntos
Fabaceae/genética , Variação Genética , Genoma de Planta/genética , Sequência de Bases , Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Fabaceae/classificação , Genótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Alinhamento de Sequência , Análise de Sequência de DNA
8.
Theor Appl Genet ; 126(8): 2029-38, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23702513

RESUMO

Phomopsis seed decay (PSD), primarily caused by Phomopsis longicolla, is a major contributor to poor soybean seed quality and significant yield loss, particularly in early maturing soybean genotypes. However, it is not yet known whether PSD resistance is associated with early maturity. This study was conducted to identify quantitative trait loci (QTLs) for resistance to PSD and days to maturity using a recombinant inbred line (RIL) population derived from a cross between the PSD-resistant Taekwangkong and the PSD-susceptible SS2-2. Based on a genetic linkage map incorporating 117 simple sequence repeat markers, QTL analysis revealed two and three QTLs conferring PSD resistance and days to maturity, respectively, in the RIL population. Two QTLs (PSD-6-1 and PSD-10-2) for PSD resistance were identified in the intervals of Satt100-Satt460 and Sat_038-Satt243 on chromosomes 6 and 10, respectively. Two QTLs explained phenotypic variances in PSD resistance of 46.3 and 14.1 %, respectively. At the PSD-6-1 QTL, the PSD-resistant cultivar Taekwangkong contributed the allele with negative effect decreasing the infection rate of PSD and this QTL does not overlap with any previously reported loci for PSD resistance in other soybean genotypes. Among the three QTLs for days to maturity, two (Mat-6-2 and Mat-10-3) were located at positions similar to the PSD-resistance QTLs. The identification of the QTLs linked to both PSD resistance and days to maturity indicates a biological correlation between these two traits. The newly identified QTL for resistance to PSD associated with days to maturity in Taekwangkong will help improve soybean resistance to P. longicolla.


Assuntos
Resistência à Doença/genética , Glycine max/genética , Micoses/imunologia , Doenças das Plantas/imunologia , Sementes/microbiologia , Ascomicetos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Ligação Genética/genética , Genótipo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Glycine max/imunologia , Glycine max/microbiologia
9.
Breed Sci ; 61(5): 445-52, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23136484

RESUMO

Since the genome sequences of wild species may provide key information about the genetic elements involved in speciation and domestication, the undomesticated soybean (Glycine soja Sieb. and Zucc.), a wild relative of the current cultivated soybean (G. max), was sequenced. In contrast to the current hypothesis of soybean domestication, which holds that the current cultivated soybean was domesticated from G. soja, our previous work has suggested that soybean was domesticated from the G. soja/G. max complex that diverged from a common ancestor of these two species of Glycine. In this review, many structural genomic differences between the two genomes are described and a total of 705 genes are identified as structural variations (SVs) between G. max and G. soja. After protein families database of alignments and hidden Markov models IDs and gene ontology terms were assigned, many interesting genes are discussed in detail using four domestication related traits, such as flowering time, transcriptional factors, carbon metabolism and disease resistance. Soybean domestication history is explored by studying these SVs in genes. Analysis of SVs in genes at the population-level may clarify the domestication history of soybean.

10.
BMC Plant Biol ; 12: 139, 2012 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-22877146

RESUMO

BACKGROUND: R genes are a key component of genetic interactions between plants and biotrophic bacteria and are known to regulate resistance against bacterial invasion. The most common R proteins contain a nucleotide-binding site and a leucine-rich repeat (NBS-LRR) domain. Some NBS-LRR genes in the soybean genome have also been reported to function in disease resistance. In this study, the number of NBS-LRR genes was found to correlate with the number of disease resistance quantitative trait loci (QTL) that flank these genes in each chromosome. NBS-LRR genes co-localized with disease resistance QTL. The study also addressed the functional redundancy of disease resistance on recently duplicated regions that harbor NBS-LRR genes and NBS-LRR gene expression in the bacterial leaf pustule (BLP)-induced soybean transcriptome. RESULTS: A total of 319 genes were determined to be putative NBS-LRR genes in the soybean genome. The number of NBS-LRR genes on each chromosome was highly correlated with the number of disease resistance QTL in the 2-Mb flanking regions of NBS-LRR genes. In addition, the recently duplicated regions contained duplicated NBS-LRR genes and duplicated disease resistance QTL, and possessed either an uneven or even number of NBS-LRR genes on each side. The significant difference in NBS-LRR gene expression between a resistant near-isogenic line (NIL) and a susceptible NIL after inoculation of Xanthomonas axonopodis pv. glycines supports the conjecture that NBS-LRR genes have disease resistance functions in the soybean genome. CONCLUSIONS: The number of NBS-LRR genes and disease resistance QTL in the 2-Mb flanking regions of each chromosome was significantly correlated, and several recently duplicated regions that contain NBS-LRR genes harbored disease resistance QTL for both sides. In addition, NBS-LRR gene expression was significantly different between the BLP-resistant NIL and the BLP-susceptible NIL in response to bacterial infection. From these observations, NBS-LRR genes are suggested to contribute to disease resistance in soybean. Moreover, we propose models for how NBS-LRR genes were duplicated, and apply Ks values for each NBS-LRR gene cluster.


Assuntos
Mapeamento Cromossômico , Resistência à Doença , Genes de Plantas , Glycine max/genética , Glycine max/imunologia , Imunidade Vegetal/genética , Sequência de Bases , Sítios de Ligação , Cromossomos de Plantas/genética , Duplicação Gênica , Perfilação da Expressão Gênica , Proteínas de Repetições Ricas em Leucina , Família Multigênica , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Proteínas/genética , Proteínas/metabolismo , Locos de Características Quantitativas , Glycine max/microbiologia , Transcriptoma , Xanthomonas axonopodis/imunologia , Xanthomonas axonopodis/patogenicidade
11.
Theor Appl Genet ; 124(4): 613-22, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22083354

RESUMO

Soybean lipoxygenase genes comprise a multi-gene family, with the seed lipoxygenase isozymes LOX1, LOX2, and LOX3 present in soybean seeds. Among these, the LOX2 isozyme is primarily responsible for the "beany" flavor of most soybean seeds. The variety, Jinpumkong 2, having null alleles (lx1, lx2, and lx3) lacks the three seed lipoxygenases; so, sequence variations between the lipoxygenase-2 genes of Pureunkong (Lx2) and Jinpumkong 2 (lx2) cultivars were examined. One indel, four single nucleotide polymorphisms (SNPs), a 175-bp fragment in the 5'-flanking sequence, and a missense mutation within the coding region were found in Jinpumkong 2. The distribution of the sequence variations was investigated among 90 recombinant inbred lines (RILs) derived from a cross of Pureunkong × Jinpumkong 2 and in 480 germplasm accessions with various origins and maturity groups. Evidence for a genetic bottleneck was observed: the 175-bp fragment was rare in Glycine max, but present in the majority of the G. soja accessions. Furthermore, the 175-bp fragment was not detected in the 5' upstream region of the Lx2 gene on chromosome (Chr) 13 in Williams 82; instead, a similar 175-bp fragment was positioned in the homeologous region on Chr 15. The findings indicated that the novel fragment identified was originally present in the Lx2 region prior to the recent genome duplication in soybean, but became rare in the G. max gene pool. The missense mutation of the conserved histidine residue of the lx2 allele was developed into a single nucleotide-amplified polymorphism (SNAP) marker. The missense mutation showed a perfect correlation with the LOX2-lacking phenotype, so the SNAP marker is expected to facilitate breeding of soybean cultivars which lack the LOX2 isozyme.


Assuntos
Glycine max/genética , Lipoxigenase/genética , Sementes/química , Alelos , Sequência de Bases , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Sementes/enzimologia , Homologia de Sequência do Ácido Nucleico , Glycine max/química , Glycine max/enzimologia
12.
DNA Res ; 18(6): 483-97, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21987089

RESUMO

Bacterial leaf pustule (BLP) disease is caused by Xanthomonas axonopodis pv. glycines (Xag). To investigate the plant basal defence mechanisms induced in response to Xag, differential gene expression in near-isogenic lines (NILs) of BLP-susceptible and BLP-resistant soybean was analysed by RNA-Seq. Of a total of 46 367 genes that were mapped to soybean genome reference sequences, 1978 and 783 genes were found to be up- and down-regulated, respectively, in the BLP-resistant NIL relative to the BLP-susceptible NIL at 0, 6, and 12h after inoculation (hai). Clustering analysis revealed that these genes could be grouped into 10 clusters with different expression patterns. Functional annotation based on gene ontology (GO) categories was carried out. Among the putative soybean defence response genes identified (GO:0006952), 134 exhibited significant differences in expression between the BLP-resistant and -susceptible NILs. In particular, pathogen-associated molecular pattern (PAMP) and damage-associated molecular pattern (DAMP) receptors and the genes induced by these receptors were highly expressed at 0 hai in the BLP-resistant NIL. Additionally, pathogenesis-related (PR)-1 and -14 were highly expressed at 0 hai, and PR-3, -6, and -12 were highly expressed at 12 hai. There were also significant differences in the expression of the core JA-signalling components MYC2 and JASMONATE ZIM-motif. These results indicate that powerful basal defence mechanisms involved in the recognition of PAMPs or DAMPs and a high level of accumulation of defence-related gene products may contribute to BLP resistance in soybean.


Assuntos
Alelos , Perfilação da Expressão Gênica/métodos , Genes de Plantas , Glycine max/genética , Doenças das Plantas/genética , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Glycine max/imunologia
13.
Theor Appl Genet ; 123(4): 545-53, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21660531

RESUMO

Since the genetic control of flowering time is very important in photoperiod-sensitive soybean (Glycine max (L.) Merr.), genes affecting flowering under different environment conditions have been identified and described. The objectives were to identify quantitative trait loci (QTLs) for flowering time in different latitudinal and climatic regions, and to understand how chromosomal rearrangement and genome organization contribute to flowering time in soybean. Recombinant inbred lines from a cross between late-flowering 'Jinpumkong 2' and early-flowering 'SS2-2' were used to evaluate the phenotypic data for days to flowering (DF) collected from Kamphaeng Saen, Thailand (14°01'N), Suwon, Korea (37°15'N), and Longjing, China (42°46'N). A weakly positive phenotypic correlation (r = 0.36) was found between DF in Korea and Thailand; however, a strong correlation (r = 0.74) was shown between Korea and China. After 178 simple sequence repeat (SSR) markers were placed on a genetic map spanning 2,551.7 cM, four independent DF QTLs were identified on different chromosomes (Chrs). Among them, three QTLs on Chrs 9, 13 and 16 were either Thailand- or Korea-specific. The DF QTL on Chr 6 was identified in both Korea and China, suggesting it is less environment-sensitive. Comparative analysis of four DF QTL regions revealed a syntenic relationship between two QTLs on Chrs 6 and 13. All five duplicated gene pairs clustered in the homeologous genomic regions were found to be involved in the flowering. Identification and comparative analysis of multiple DF QTLs from different environments will facilitate the significant improvement in soybean breeding programs with respect to control of flowering time.


Assuntos
Flores/crescimento & desenvolvimento , Glycine max/genética , Locos de Características Quantitativas , China , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cruzamentos Genéticos , DNA de Plantas/genética , Meio Ambiente , Flores/genética , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Marcadores Genéticos , Família Multigênica , Fenótipo , Fotoperíodo , República da Coreia , Análise de Sequência de DNA , Tailândia
14.
Photosynth Res ; 109(1-3): 161-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21253858

RESUMO

Acclimation of Chlamydomonas reinhardtii (hereafter, Chlamydomonas) to low or limiting CO(2) or inorganic carbon (C(i)) has been studied fairly extensively with regard to the mechanisms underlying the inducible C(i) acquisition systems and the signal transduction pathway involved in recognizing and responding to decreased C(i) availability. Investigation of low C(i )acclimation responses typically is performed with non-synchronous cultures grown in continuous light to avoid any effects of the cell division cycle (CDC) confounding interpretation of acclimation responses. However, little is known about whether acclimation to low C(i) might affect the distribution of cells among the various stages of the CDC. To investigate the effects of a limiting-C(i) challenge on the CDC of Chlamydomonas, flow cytometry was used to monitor the distribution of cells among the CDC stages in both synchronous and non-synchronous cultures during acclimation to low or limiting C(i). When faced with C(i) limitation, non-synchronous cultures of Chlamydomonas undergo transient synchronization as those cells past the Commitment point of the CDC undergo division, while the remainder of the cells pause their growth in early G-phase, with the result that the cells all accumulate in early G-phase, appearing transiently synchronized until acclimated sufficiently to the decreased C(i) for growth to resume. This perturbation of the CDC by a limiting-C(i) challenge has important implications for the interpretation of gene expression and other responses apparently induced by low or limiting C(i).


Assuntos
Aclimatação/efeitos dos fármacos , Dióxido de Carbono/farmacologia , Carbono/farmacologia , Ciclo Celular/efeitos dos fármacos , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/fisiologia , DNA de Plantas , Citometria de Fluxo , RNA Mensageiro/genética , RNA de Plantas/genética , Fatores de Tempo
15.
Proc Natl Acad Sci U S A ; 107(51): 22032-7, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21131573

RESUMO

The genome of soybean (Glycine max), a commercially important crop, has recently been sequenced and is one of six crop species to have been sequenced. Here we report the genome sequence of G. soja, the undomesticated ancestor of G. max (in particular, G. soja var. IT182932). The 48.8-Gb Illumina Genome Analyzer (Illumina-GA) short DNA reads were aligned to the G. max reference genome and a consensus was determined for G. soja. This consensus sequence spanned 915.4 Mb, representing a coverage of 97.65% of the G. max published genome sequence and an average mapping depth of 43-fold. The nucleotide sequence of the G. soja genome, which contains 2.5 Mb of substituted bases and 406 kb of small insertions/deletions relative to G. max, is ∼0.31% different from that of G. max. In addition to the mapped 915.4-Mb consensus sequence, 32.4 Mb of large deletions and 8.3 Mb of novel sequence contigs in the G. soja genome were also detected. Nucleotide variants of G. soja versus G. max confirmed by Roche Genome Sequencer FLX sequencing showed a 99.99% concordance in single-nucleotide polymorphism and a 98.82% agreement in insertion/deletion calls on Illumina-GA reads. Data presented in this study suggest that the G. soja/G. max complex may be at least 0.27 million y old, appearing before the relatively recent event of domestication (6,000∼9,000 y ago). This suggests that soybean domestication is complicated and that more in-depth study of population genetics is needed. In any case, genome comparison of domesticated and undomesticated forms of soybean can facilitate its improvement.


Assuntos
Variação Genética , Genoma de Planta/fisiologia , Glycine max/genética
16.
Theor Appl Genet ; 120(7): 1443-50, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20087567

RESUMO

Soybean bacterial leaf pustule (BLP) is a prevalent disease caused by Xanthomonas axonopodis pv. glycines. Fine mapping of the BLP resistant gene, rxp, is needed to select BLP resistant soybean cultivars by marker-assisted selection (MAS). We used a total of 227 recombinant inbred lines (RILs) derived from a cross between 'Taekwangkong' (BLP susceptible) and 'Danbaekkong' (BLP resistant) for rxp fine mapping and two different sets of near isogenic lines (NILs) from Hwangkeumkong x SS2-2 and Taekwangkong x SS2-2 were used for confirmation. Using sequences between Satt372 and Satt486 flanking rxp from soybean genome sequences, eight simple sequence repeats (SSR) and two single nucleotide polymorphism (SNP) markers were newly developed in a 6.2-cM interval. Linkage mapping with the RILs and NILs allowed us to map the rxp region with high resolution. The genetic order of all markers was completely consistent with their physical order. QTL analysis by comparison of the BLP phenotyping data with all markers showed rxp was located between SNUSSR17_9 and SNUSNP17_12. Gene annotation analysis of the 33 kb region between SNUSSR17_9 and SNUSNP17_12 suggested three predicted genes, two of which could be candidate genes of BLP resistance: membrane protein and zinc finger protein. Candidate genes showed high similarity with their paralogous genes, which were located on the duplicated regions obtaining BLP resistance QTLs. High-resolution map in rxp region with eight SSR and two SNP markers will be useful for not only MAS of BLP resistance but also characterization of rxp.


Assuntos
Genes de Plantas/genética , Glycine max/genética , Imunidade Inata/genética , Mapeamento Físico do Cromossomo , Doenças das Plantas/imunologia , Folhas de Planta/microbiologia , Xanthomonas/fisiologia , Ligação Genética , Endogamia , Repetições Minissatélites/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Reprodutibilidade dos Testes , Homologia de Sequência do Ácido Nucleico , Glycine max/imunologia , Glycine max/microbiologia
17.
Plant Physiol ; 151(3): 1066-76, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19684227

RESUMO

Soybean (Glycine max) is a paleopolyploid whose genome has gone through at least two rounds of polyploidy and subsequent diploidization events. Several studies have investigated the changes in genome structure produced by the relatively recent polyploidy event, but little is known about the ancient polyploidy due to the high frequency of gene loss after duplication. Our previous study, regarding a region responsible for bacterial leaf pustule, reported two homeologous Rxp regions produced by the recent whole-genome duplication event. In this study, we identified the full set of four homeologous Rxp regions (ranging from 1.96 to 4.60 Mb) derived from both the recent and ancient polyploidy events, and this supports the quadruplicated structure of the soybean genome. Among the predicted genes on chromosome 17 (linkage group D2), 71% of them were conserved in a recently duplicated region, while 21% and 24% of duplicated genes were retained in two homeologous regions formed by the ancient polyploidy. Furthermore, comparative analysis showed a 2:1 relationship between soybean and Medicago truncatula, since M. truncatula did not undergo the recent polyploidy event that soybean did. Unlike soybean, M. truncatula homeologous regions were highly fractionated and their synteny did not exist, revealing different rates of diploidization process between the two species. Our data show that extensive synteny remained in the four homeologous regions in soybean, even though the soybean genome experienced dynamic genome rearrangements following paleopolyploidy events. Moreover, multiple Rxp quantitative trait loci on different soybean chromosomes actually comprise homeologous regions produced by two rounds of polyploidy events.


Assuntos
Genoma de Planta , Glycine max/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Cromossomos de Plantas , Hibridização Genômica Comparativa , DNA de Plantas/genética , Evolução Molecular , Etiquetas de Sequências Expressas , Genes de Plantas , Medicago truncatula/genética , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Poliploidia , Análise de Sequência de DNA , Sintenia
18.
BMC Plant Biol ; 8: 133, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19105811

RESUMO

BACKGROUND: Soybean lipoxygenases (Lxs) play important roles in plant resistance and in conferring the distinct bean flavor. Lxs comprise a multi-gene family that includes GmLx1, GmLx2 and GmLx3, and many of these genes have been characterized. We were interested in investigating the relationship between the soybean lipoxygenase isozymes from an evolutionary perspective, since soybean has undergone two rounds of polyploidy. Here we report the tetrad genome structure of soybean Lx regions produced by ancient and recent polyploidy. Also, comparative genomics with Medicago truncatula was performed to estimate Lxs in the common ancestor of soybean and Medicago. RESULTS: Two Lx regions in Medicago truncatula showing synteny with soybean were analyzed. Differential evolutionary rates between soybean and Medicago were observed and the median Ks values of Mt-Mt, Gm-Mt, and Gm-Gm paralogs were determined to be 0.75, 0.62, and 0.46, respectively. Thus the comparison of Gm-Mt paralogs (Ks = 0.62) and Gm-Mt orthologs (Ks = 0.45) supports the ancient duplication of Lx regions in the common ancestor prior to the Medicago-Glycine split. After speciation, no Lx regions generated by another polyploidy were identified in Medicago. Instead tandem duplication of Lx genes was observed. On the other hand, a lineage-specific duplication occurred in soybean resulting in two pairs of Lx regions. Each pair of soybean regions was co-orthologous to one Lx region in Medicago. A total of 34 Lx genes (15 MtLxs and 19 GmLxs) were divided into two groups by phylogenetic analysis. Our study shows that the Lx gene family evolved from two distinct Lx genes in the most recent common ancestor. CONCLUSION: This study analyzed two pairs of Lx regions generated by two rounds of polyploidy in soybean. Each pair of soybean homeologous regions is co-orthologous to one region of Medicago, demonstrating the quartet structure of the soybean genome. Differential evolutionary rates between soybean and Medicago were observed; thus optimized rates of Ks per year should be applied for accurate estimation of coalescence times to each case of comparison: soybean-soybean, soybean-Medicago, or Medicago-Medicago. In conclusion, the soybean Lx gene family expanded by ancient polyploidy prior to taxon divergence, followed by a soybean- specific duplication and tandem duplications, respectively.


Assuntos
Evolução Molecular , Glycine max/genética , Lipoxigenase/genética , Medicago truncatula/genética , Família Multigênica , Cromossomos Artificiais Bacterianos , Mapeamento de Sequências Contíguas , DNA de Plantas/genética , Duplicação Gênica , Genes de Plantas , Genoma de Planta , Genômica , Isoenzimas , Medicago truncatula/enzimologia , Filogenia , Poliploidia , Análise de Sequência de DNA , Glycine max/enzimologia , Sintenia
19.
DNA Res ; 15(2): 93-102, 2008 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-18334514

RESUMO

A single recessive gene, rxp, on linkage group (LG) D2 controls bacterial leaf-pustule resistance in soybean. We identified two homoeologous contigs (GmA and GmA') composed of five bacterial artificial chromosomes (BACs) during the selection of BAC clones around Rxp region. With the recombinant inbred line population from the cross of Pureunkong and Jinpumkong 2, single-nucleotide polymorphism and simple sequence repeat marker genotyping were able to locate GmA' on LG A1. On the basis of information in the Soybean Breeders Toolbox and our results, parts of LG A1 and LG D2 share duplicated regions. Alignment and annotation revealed that many homoeologous regions contained kinases and proteins related to signal transduction pathway. Interestingly, inserted sequences from GmA and GmA' had homology with transposase and integrase. Estimation of evolutionary events revealed that speciation of soybean from Medicago and the recent divergence of two soybean homoeologous regions occurred at 60 and 12 million years ago, respectively. Distribution of synonymous substitution patterns, K(s), yielded a first secondary peak (mode K(s) = 0.10-0.15) followed by two smaller bulges were displayed between soybean homologous regions. Thus, diploidized paleopolyploidy of soybean genome was again supported by our study.


Assuntos
Duplicação Gênica , Genoma de Planta , Glycine max/genética , Análise de Sequência de DNA , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas , Evolução Molecular , Dados de Sequência Molecular , Poliploidia
20.
Cryobiology ; 54(2): 154-63, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17316598

RESUMO

The suitability of using Arabidopsis as a model plant to investigate freezing tolerance was evaluated by observing similarities to winter cereals in tissue damage following controlled freezing and determining the extent to which Arabidopsis undergoes subzero-acclimation. Plants were grown and frozen under controlled conditions and percent survival was evaluated by observing re-growth after freezing. Paraffin embedded sections of plants were triple stained and observed under light microscopy. Histological observations of plants taken 1 week after freezing showed damage analogous to winter cereals in the vascular tissue of roots and leaf axels but no damage to meristematic regions. The LT(50) of non-acclimated Arabidopsis decreased from about -6 degrees C to a minimum of about -13 degrees C after 7 days of cold-acclimation at 3 degrees C. After exposing cold-acclimated plants to -3 degrees C for 3 days (subzero-acclimation) the LT(50) was lowered an additional 3 degrees C. Defining the underlying mechanisms of subzero-acclimation in Arabidopsis may provide an experimental platform to help understand winter hardiness in economically important crop species. However, distinctive histological differences in crown anatomy between Arabidopsis and winter cereals must be taken into account to avoid misleading conclusions on the nature of winter hardiness in winter cereals.


Assuntos
Aclimatação/fisiologia , Arabidopsis/fisiologia , Avena/fisiologia , Temperatura Baixa , Arabidopsis/anatomia & histologia , Avena/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA