Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
bioRxiv ; 2024 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-39484566

RESUMO

APOEε4 is the strongest genetic risk factor for Alzheimer's disease (AD) with approximately 50% of AD patients carrying at least one APOEε4 allele. Our group identified a protective interaction between APOEε4 with the African-specific A allele of rs10423769, which reduces the AD risk effect of APOEε4 homozygotes by approximately 75%. The protective variant lies 2Mb from APOE in a region of segmental duplications (SD) of chromosome 19 containing a cluster of pregnancy specific beta-1 glycoprotein genes (PSGs) and a long non-coding RNA. Using both short and long read sequencing, we demonstrate that rs10423769_A allele lies within a unique single haplotype inside this region of segmental duplication. We identified the protective haplotype in all African ancestry populations studied, including both West and East Africans, suggesting the variant has an old origin. Long-read sequencing identified both structural and DNA methylation differences between the protective rs10423769_A allele and non-protective haplotypes. An expanded variable number tandem repeat (VNTR) containing multiple MEF2 family transcription factor binding motifs was found associated with the protective haplotype (p-value = 2.9e-10). These findings provide novel insights into the mechanisms of this African-origin protective variant for AD in APOEε4 carriers and supports the importance of including all ancestries in AD research.

2.
Front Aging Neurosci ; 16: 1459796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39295643

RESUMO

Introduction: Hispanic/Latino populations are underrepresented in Alzheimer Disease (AD) genetic studies. Puerto Ricans (PR), a three-way admixed (European, African, and Amerindian) population is the second-largest Hispanic group in the continental US. We aimed to conduct a genome-wide association study (GWAS) and comprehensive analyses to identify novel AD susceptibility loci and characterize known AD genetic risk loci in the PR population. Materials and methods: Our study included Whole Genome Sequencing (WGS) and phenotype data from 648 PR individuals (345 AD, 303 cognitively unimpaired). We used a generalized linear-mixed model adjusting for sex, age, population substructure, and genetic relationship matrix. To infer local ancestry, we merged the dataset with the HGDP/1000G reference panel. Subsequently, we conducted univariate admixture mapping (AM) analysis. Results: We identified suggestive signals within the SLC38A1 and SCN8A genes on chromosome 12q13. This region overlaps with an area of linkage of AD in previous studies (12q13) in independent data sets further supporting. Univariate African AM analysis identified one suggestive ancestral block (p = 7.2×10-6) located in the same region. The ancestry-aware approach showed that this region has both European and African ancestral backgrounds and both contributing to the risk in this region. We also replicated 11 different known AD loci -including APOE- identified in mostly European studies, which is likely due to the high European background of the PR population. Conclusion: PR GWAS and AM analysis identified a suggestive AD risk locus on chromosome 12, which includes the SLC38A1 and SCN8A genes. Our findings demonstrate the importance of designing GWAS and ancestry-aware approaches and including underrepresented populations in genetic studies of AD.

3.
J Pers Med ; 14(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39063957

RESUMO

INTRODUCTION: In the realm of computational pathology, the scarcity and restricted diversity of genitourinary (GU) tissue datasets pose significant challenges for training robust diagnostic models. This study explores the potential of Generative Adversarial Networks (GANs) to mitigate these limitations by generating high-quality synthetic images of rare or underrepresented GU tissues. We hypothesized that augmenting the training data of computational pathology models with these GAN-generated images, validated through pathologist evaluation and quantitative similarity measures, would significantly enhance model performance in tasks such as tissue classification, segmentation, and disease detection. METHODS: To test this hypothesis, we employed a GAN model to produce synthetic images of eight different GU tissues. The quality of these images was rigorously assessed using a Relative Inception Score (RIS) of 1.27 ± 0.15 and a Fréchet Inception Distance (FID) that stabilized at 120, metrics that reflect the visual and statistical fidelity of the generated images to real histopathological images. Additionally, the synthetic images received an 80% approval rating from board-certified pathologists, further validating their realism and diagnostic utility. We used an alternative Spatial Heterogeneous Recurrence Quantification Analysis (SHRQA) to assess the quality of prostate tissue. This allowed us to make a comparison between original and synthetic data in the context of features, which were further validated by the pathologist's evaluation. Future work will focus on implementing a deep learning model to evaluate the performance of the augmented datasets in tasks such as tissue classification, segmentation, and disease detection. This will provide a more comprehensive understanding of the utility of GAN-generated synthetic images in enhancing computational pathology workflows. RESULTS: This study not only confirms the feasibility of using GANs for data augmentation in medical image analysis but also highlights the critical role of synthetic data in addressing the challenges of dataset scarcity and imbalance. CONCLUSIONS: Future work will focus on refining the generative models to produce even more diverse and complex tissue representations, potentially transforming the landscape of medical diagnostics with AI-driven solutions.

4.
J Biol Chem ; 300(4): 107128, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432635

RESUMO

Both POLG and MGME1 are needed for mitochondrial DNA (mtDNA) maintenance in animal cells. POLG, the primary replicative polymerase of the mitochondria, has an exonuclease activity (3'→5') that corrects for the misincorporation of bases. MGME1 serves as an exonuclease (5'→3'), producing ligatable DNA ends. Although both have a critical role in mtDNA replication and elimination of linear fragments, these mechanisms are still not fully understood. Using digital PCR to evaluate and compare mtDNA integrity, we show that Mgme1 knock out (Mgme1 KK) tissue mtDNA is more fragmented than POLG exonuclease-deficient "Mutator" (Polg MM) or WT tissue. In addition, next generation sequencing of mutant hearts showed abundant duplications in/nearby the D-loop region and unique 100 bp duplications evenly spaced throughout the genome only in Mgme1 KK hearts. However, despite these unique mtDNA features at steady-state, we observed a similar delay in the degradation of mtDNA after an induced double strand DNA break in both Mgme1 KK and Polg MM models. Lastly, we characterized double mutant (Polg MM/Mgme1 KK) cells and show that mtDNA cannot be maintained without at least one of these enzymatic activities. We propose a model for the generation of these genomic abnormalities which suggests a role for MGME1 outside of nascent mtDNA end ligation. Our results highlight the role of MGME1 in and outside of the D-loop region during replication, support the involvement of MGME1 in dsDNA degradation, and demonstrate that POLG EXO and MGME1 can partially compensate for each other in maintaining mtDNA.


Assuntos
DNA Polimerase gama , DNA Mitocondrial , Animais , Camundongos , DNA Polimerase gama/metabolismo , DNA Polimerase gama/genética , Replicação do DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Camundongos Knockout
5.
Mol Ther Nucleic Acids ; 35(1): 102132, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38404505

RESUMO

Mutations within mtDNA frequently give rise to severe encephalopathies. Given that a majority of these mtDNA defects exist in a heteroplasmic state, we harnessed the precision of mitochondrial-targeted TALEN (mitoTALEN) to selectively eliminate mutant mtDNA within the CNS of a murine model harboring a heteroplasmic mutation in the mitochondrial tRNA alanine gene (m.5024C>T). This targeted approach was accomplished by the use of AAV-PHP.eB and a neuron-specific synapsin promoter for effective neuronal delivery and expression of mitoTALEN. We found that most CNS regions were effectively transduced and showed a significant reduction in mutant mtDNA. This reduction was accompanied by an increase in mitochondrial tRNA alanine levels, which are drastically reduced by the m.5024C>T mutation. These results showed that mitochondrial-targeted gene editing can be effective in reducing CNS-mutant mtDNA in vivo, paving the way for clinical trials in patients with mitochondrial encephalopathies.

6.
Neurobiol Aging ; 131: 182-195, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37677864

RESUMO

A missense variant in the tetratricopeptide repeat domain 3 (TTC3) gene (rs377155188, p.S1038C, NM_003316.4:c 0.3113C>G) was found to segregate with disease in a multigenerational family with late-onset Alzheimer's disease. This variant was introduced into induced pluripotent stem cells (iPSCs) derived from a cognitively intact individual using CRISPR genome editing, and the resulting isogenic pair of iPSC lines was differentiated into cortical neurons. Transcriptome analysis showed an enrichment for genes involved in axon guidance, regulation of actin cytoskeleton, and GABAergic synapse. Functional analysis showed that the TTC3 p.S1038C iPSC-derived neuronal progenitor cells had altered 3-dimensional morphology and increased migration, while the corresponding neurons had longer neurites, increased branch points, and altered expression levels of synaptic proteins. Pharmacological treatment with small molecules that target the actin cytoskeleton could revert many of these cellular phenotypes, suggesting a central role for actin in mediating the cellular phenotypes associated with the TTC3 p.S1038C variant.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Doença de Alzheimer/genética , Neurônios , Citoesqueleto de Actina , Transtornos de Início Tardio , Prosencéfalo , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases
7.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37373402

RESUMO

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, multi-symptom illness characterized by debilitating fatigue and post-exertional malaise (PEM). Numerous studies have reported sex differences at the epidemiological, cellular, and molecular levels between male and female ME/CFS patients. To gain further insight into these sex-dependent changes, we evaluated differential gene expression by RNA-sequencing (RNA-Seq) in 33 ME/CFS patients (20 female, 13 male) and 34 matched healthy controls (20 female and 14 male) before, during, and after an exercise challenge intended to provoke PEM. Our findings revealed that pathways related to immune-cell signaling (including IL-12) and natural killer cell cytotoxicity were activated as a result of exertion in the male ME/CFS cohort, while female ME/CFS patients did not show significant enough changes in gene expression to meet the criteria for the differential expression. Functional analysis during recovery from an exercise challenge showed that male ME/CFS patients had distinct changes in the regulation of specific cytokine signals (including IL-1ß). Meanwhile, female ME/CFS patients had significant alterations in gene networks related to cell stress, response to herpes viruses, and NF-κß signaling. The functional pathways and differentially expressed genes highlighted in this pilot project provide insight into the sex-specific pathophysiology of ME/CFS.


Assuntos
Síndrome de Fadiga Crônica , Humanos , Masculino , Feminino , Síndrome de Fadiga Crônica/genética , Síndrome de Fadiga Crônica/metabolismo , Projetos Piloto , Células Matadoras Naturais/metabolismo , Interleucina-12/metabolismo , Citocinas/metabolismo
8.
bioRxiv ; 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37292815

RESUMO

A missense variant in the tetratricopeptide repeat domain 3 ( TTC3 ) gene (rs377155188, p.S1038C, NM_003316.4:c.3113C>G) was found to segregate with disease in a multigenerational family with late onset Alzheimer's disease. This variant was introduced into induced pluripotent stem cells (iPSCs) derived from a cognitively intact individual using CRISPR genome editing and the resulting isogenic pair of iPSC lines were differentiated into cortical neurons. Transcriptome analysis showed an enrichment for genes involved in axon guidance, regulation of actin cytoskeleton, and GABAergic synapse. Functional analysis showed that the TTC3 p.S1038C iPSC-derived neuronal progenitor cells had altered 3D morphology and increased migration, while the corresponding neurons had longer neurites, increased branch points, and altered expression levels of synaptic proteins. Pharmacological treatment with small molecules that target the actin cytoskeleton could revert many of these cellular phenotypes, suggesting a central role for actin in mediating the cellular phenotypes associated with the TTC3 p.S1038C variant. Highlights: The AD risk variant TTC3 p.S1038C reduces the expression levels of TTC3 The variant modifies the expression of AD specific genes BACE1 , INPP5F , and UNC5C Neurons with the variant are enriched for genes in the PI3K-Akt pathwayiPSC-derived neurons with the alteration have increased neurite length and branchingThe variant interferes with actin cytoskeleton and is ameliorated by Cytochalasin D.

9.
Mol Ther ; 31(6): 1775-1790, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37147804

RESUMO

Long non-coding RNAs (lncRNAs) orchestrate various biological processes and regulate the development of cardiovascular diseases. Their potential therapeutic benefit to tackle disease progression has recently been extensively explored. Our study investigates the role of lncRNA Nudix Hydrolase 6 (NUDT6) and its antisense target fibroblast growth factor 2 (FGF2) in two vascular pathologies: abdominal aortic aneurysms (AAA) and carotid artery disease. Using tissue samples from both diseases, we detected a substantial increase of NUDT6, whereas FGF2 was downregulated. Targeting Nudt6 in vivo with antisense oligonucleotides in three murine and one porcine animal model of carotid artery disease and AAA limited disease progression. Restoration of FGF2 upon Nudt6 knockdown improved vessel wall morphology and fibrous cap stability. Overexpression of NUDT6 in vitro impaired smooth muscle cell (SMC) migration, while limiting their proliferation and augmenting apoptosis. By employing RNA pulldown followed by mass spectrometry as well as RNA immunoprecipitation, we identified Cysteine and Glycine Rich Protein 1 (CSRP1) as another direct NUDT6 interaction partner, regulating cell motility and SMC differentiation. Overall, the present study identifies NUDT6 as a well-conserved antisense transcript of FGF2. NUDT6 silencing triggers SMC survival and migration and could serve as a novel RNA-based therapeutic strategy in vascular diseases.


Assuntos
Aneurisma da Aorta Abdominal , Doenças das Artérias Carótidas , RNA Longo não Codificante , Animais , Camundongos , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/terapia , Aneurisma da Aorta Abdominal/metabolismo , Apoptose/genética , Proliferação de Células/genética , Progressão da Doença , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Suínos , Oligonucleotídeos Antissenso
10.
J Pers Med ; 13(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36983728

RESUMO

The recent integration of open-source data with machine learning models, especially in the medical field, has opened new doors to studying disease progression and/or regression. However, the ability to use medical data for machine learning approaches is limited by the specificity of data for a particular medical condition. In this context, the most recent technologies, like generative adversarial networks (GANs), are being looked upon as a potential way to generate high-quality synthetic data that preserve the clinical variability of a condition. However, despite some success, GAN model usage remains largely minimal when depicting the heterogeneity of a disease such as prostate cancer. Previous studies from our group members have focused on automating the quantitative multi-parametric magnetic resonance imaging (mpMRI) using habitat risk scoring (HRS) maps on the prostate cancer patients in the BLaStM trial. In the current study, we aimed to use the images from the BLaStM trial and other sources to train the GAN models, generate synthetic images, and validate their quality. In this context, we used T2-weighted prostate MRI images as training data for Single Natural Image GANs (SinGANs) to make a generative model. A deep learning semantic segmentation pipeline trained the model to segment the prostate boundary on 2D MRI slices. Synthetic images with a high-level segmentation boundary of the prostate were filtered and used in the quality control assessment by participating scientists with varying degrees of experience (more than ten years, one year, or no experience) to work with MRI images. Results showed that the most experienced participating group correctly identified conventional vs. synthetic images with 67% accuracy, the group with one year of experience correctly identified the images with 58% accuracy, and the group with no prior experience reached 50% accuracy. Nearly half (47%) of the synthetic images were mistakenly evaluated as conventional. Interestingly, in a blinded quality assessment, a board-certified radiologist did not significantly differentiate between conventional and synthetic images in the context of the mean quality of synthetic and conventional images. Furthermore, to validate the usability of the generated synthetic images from prostate cancer MRIs, we subjected these to anomaly detection along with the original images. Importantly, the success rate of anomaly detection for quality control-approved synthetic data in phase one corresponded to that of the conventional images. In sum, this study shows promise that high-quality synthetic images from MRIs can be generated using GANs. Such an AI model may contribute significantly to various clinical applications which involve supervised machine-learning approaches.

12.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36769022

RESUMO

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic, complex multi-organ illness characterized by unexplained debilitating fatigue and post-exertional malaise (PEM), which is defined as a worsening of symptoms following even minor physical or mental exertion. Our study aimed to evaluate transcriptomic changes in ME/CFS female patients undergoing an exercise challenge intended to precipitate PEM. Our time points (baseline before exercise challenge, the point of maximal exertion, and after an exercise challenge) allowed for the exploration of the transcriptomic response to exercise and recovery in female patients with ME/CFS, as compared to healthy controls (HCs). Under maximal exertion, ME/CFS patients did not show significant changes in gene expression, while HCs demonstrated altered functional gene networks related to signaling and integral functions of their immune cells. During the recovery period (commonly during onset of PEM), female ME/CFS patients showed dysregulated immune signaling pathways and dysfunctional cellular responses to stress. The unique functional pathways identified provide a foundation for future research efforts into the disease, as well as for potential targeted treatment options.


Assuntos
Síndrome de Fadiga Crônica , Humanos , Feminino , Síndrome de Fadiga Crônica/genética , Síndrome de Fadiga Crônica/diagnóstico , Transcriptoma , Perfilação da Expressão Gênica , Exercício Físico/fisiologia , Transdução de Sinais
13.
Front Genet ; 13: 944837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36437953

RESUMO

At present, the neuronal mechanisms underlying the diagnosis of autism spectrum disorder (ASD) have not been established. However, studies from human postmortem ASD brains have consistently revealed disruptions in cerebellar circuitry, specifically reductions in Purkinje cell (PC) number and size. Alterations in cerebellar circuitry would have important implications for information processing within the cerebellum and affect a wide range of human motor and non-motor behaviors. Laser capture microdissection was performed to obtain pure PC populations from a cohort of postmortem control and ASD cases and transcriptional profiles were compared. The 427 differentially expressed genes were enriched for gene ontology biological processes related to developmental organization/connectivity, extracellular matrix organization, calcium ion response, immune function and PC signaling alterations. Given the complexity of PCs and their far-ranging roles in response to sensory stimuli and motor function regulation, understanding transcriptional differences in this subset of cerebellar cells in ASD may inform on convergent pathways that impact neuronal function.

14.
Cell Rep ; 41(7): 111672, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384125

RESUMO

Recent work showed that the dominant post-menopausal estrogen, estrone, cooperates with nuclear factor κB (NF-κB) to stimulate inflammation, while pre-menopausal 17ß-estradiol opposes NF-κB. Here, we show that post-menopausal estrone, but not 17ß-estradiol, activates epithelial-to-mesenchymal transition (EMT) genes to stimulate breast cancer metastasis. HSD17B14, which converts 17ß-estradiol to estrone, is higher in cancer than normal breast tissue and in metastatic than primary cancers and associates with earlier metastasis. Treatment with estrone, but not 17ß-estradiol, and HSD17B14 overexpression both stimulate an EMT, matrigel invasion, and lung, bone, and liver metastasis in estrogen-receptor-positive (ER+) breast cancer models, while HSD17B14 knockdown reverses the EMT. Estrone:ERα recruits CBP/p300 to the SNAI2 promoter to induce SNAI2 and stimulate an EMT, while 17ß-estradiol:ERα recruits co-repressors HDAC1 and NCOR1 to this site. Present work reveals novel differences in gene regulation by these estrogens and the importance of estrone to ER+ breast cancer progression. Upon loss of 17ß-estradiol at menopause, estrone-liganded ERα would promote ER+ breast cancer invasion and metastasis.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Estrona , Fatores de Transcrição da Família Snail , Feminino , Humanos , 17-Hidroxiesteroide Desidrogenases , Neoplasias da Mama/patologia , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Estrona/metabolismo , NF-kappa B , Pós-Menopausa , Fatores de Transcrição da Família Snail/genética , Metástase Neoplásica
15.
Cell Death Dis ; 13(10): 859, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209194

RESUMO

Sustained oxidative stress in castration-resistant prostate cancer (CRPC) cells potentiates the overall tumor microenvironment (TME). Targeting the TME using colony-stimulating factor 1 receptor (CSF1R) inhibition is a promising therapy for CRPC. However, the therapeutic response to sustained CSF1R inhibition (CSF1Ri) is limited as a monotherapy. We hypothesized that one of the underlying causes for the reduced efficacy of CSF1Ri and increased oxidation in CRPC is the upregulation and uncoupling of endothelial nitric oxide synthase (NOS3). Here we show that in high-grade PCa human specimens, NOS3 abundance positively correlates with CSF1-CSF1R signaling and remains uncoupled. The uncoupling diminishes NOS3 generation of sufficient nitric oxide (NO) required for S-nitrosylation of CSF1R at specific cysteine sites (Cys 224, Cys 278, and Cys 830). Exogenous S-nitrosothiol administration (with S-nitrosoglutathione (GSNO)) induces S-nitrosylation of CSF1R and rescues the excess oxidation in tumor regions, in turn suppressing the tumor-promoting cytokines which are ineffectively suppressed by CSF1R blockade. Together these results suggest that NO administration could act as an effective combinatorial partner with CSF1R blockade against CRPC. In this context, we further show that exogenous NO treatment with GSNOR successfully augments the anti-tumor ability of CSF1Ri to effectively reduce the overall tumor burden, decreases the intratumoral percentage of anti-inflammatory macrophages, myeloid-derived progenitor cells and increases the percentage of pro-inflammatory macrophages, cytotoxic T lymphocytes, and effector T cells, respectively. Together, these findings support the concept that the NO-CSF1Ri combination has the potential to act as a therapeutic agent that restores control over TME, which in turn could improve the outcomes of PCa patients.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptor de Fator Estimulador de Colônias de Macrófagos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Cisteína , Humanos , Fator Estimulador de Colônias de Macrófagos , Masculino , Óxido Nítrico , Óxido Nítrico Sintase Tipo III , S-Nitrosoglutationa , Microambiente Tumoral
16.
Vaccines (Basel) ; 10(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893814

RESUMO

Patients with cancer tend to develop antibodies to autologous proteins. This phenomenon has been observed across multiple cancer types, including bladder, lung, colon, prostate, and melanoma. These antibodies potentially arise due to induced inflammation or an increase in self-antigens. Studies focusing on antibody diversity are particularly attractive for their diagnostic value considering antibodies are present at an early diseased stage, serum samples are relatively easy to obtain, and the prevalence of antibodies is high even when the target antigen is minimally expressed. Conversely, the surveillance of serum proteins in cancer patients is relatively challenging because they often show variability in expression and are less abundant. Moreover, an antibody's presence is also useful as it suggests the relative immunogenicity of a given antigen. For these reasons, profiling antibodies' responses is actively considered to detect the spread of antigens following immunotherapy. The current review focuses on expanding the knowledge of antibodies and their diversity, and the impact of antibody diversity on cancer regression and progression.

17.
Hum Mol Genet ; 31(17): 2876-2886, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35383839

RESUMO

Most Alzheimer's disease (AD)-associated genetic variants do not change protein coding sequence and thus likely exert their effects through regulatory mechanisms. RNA editing, the post-transcriptional modification of RNA bases, is a regulatory feature that is altered in AD patients that differs across ancestral backgrounds. Editing QTLs (edQTLs) are DNA variants that influence the level of RNA editing at a specific site. To study the relationship of DNA variants genome-wide, and particularly in AD-associated loci, with RNA editing, we performed edQTL analyses in self-reported individuals of African American (AF) or White (EU) race with corresponding global genetic ancestry averaging 82.2% African ancestry (AF) and 96.8% European global ancestry (EU) in the two groups, respectively. We used whole-genome genotyping array and RNA sequencing data from peripheral blood of 216 AD cases and 212 age-matched, cognitively intact controls. We identified 2144 edQTLs in AF and 3579 in EU, of which 1236 were found in both groups. Among these, edQTLs in linkage disequilibrium (r2 > 0.5) with AD-associated genetic variants in the SORL1, SPI1 and HLA-DRB1 loci were associated with sites that were differentially edited between AD cases and controls. While there is some shared RNA editing regulatory architecture, most edQTLs had distinct effects on the rate of RNA editing in different ancestral populations suggesting a complex architecture of RNA editing regulation. Altered RNA editing may be one possible mechanism for the functional effect of AD-associated variants and may contribute to observed differences in the genetic etiology of AD between ancestries.


Assuntos
Doença de Alzheimer , Edição de RNA , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , População Negra , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Proteínas Relacionadas a Receptor de LDL/metabolismo , Desequilíbrio de Ligação , Proteínas de Membrana Transportadoras/genética , Locos de Características Quantitativas/genética , Edição de RNA/genética
18.
Cell Death Dis ; 13(3): 208, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246515

RESUMO

Although testosterone deficiency (TD) may be present in one out of five men 40 years or older, the factors responsible for TD remain largely unknown. Leydig stem cells (LSCs) differentiate into adult Leydig cells (ALC) and produce testosterone in the testes under the pulsatile control of luteinizing hormone (LH) from the pituitary gland. However, recent studies have suggested that the testicular microenvironment (TME), which is comprised of Sertoli and peritubular myoid cells (PMC), plays an instrumental role in LSC differentiation and testosterone production under the regulation of the desert hedgehog signaling pathway (DHH). It was hypothesized that the TME releases paracrine factors to modulate LSC differentiation. For this purpose, cells (Sertoli, PMCs, LSCs, and ALCs) were extracted from men undergoing testis biopsies for sperm retrieval and were evaluated for the paracrine factors in the presence or absence of the TME (Sertoli and PMC). The results demonstrated that TME secretes leptin, which induces LSC differentiation and increases testosterone production. Leptin's effects on LSC differentiation and testosterone production, however, are inversely concentration-dependent: positive at low doses and negative at higher doses. Mechanistically, leptin binds to the leptin receptor on LSCs and induces DHH signaling to modulate LSC differentiation. Leptin-DHH regulation functions unidirectionally insofar as DHH gain or loss of function has no effect on leptin levels. Taken together, these findings identify leptin as a key paracrine factor released by cells within the TME that modulates LSC differentiation and testosterone release from mature Leydig cells, a finding with important clinical implications for TD.


Assuntos
Proteínas Hedgehog , Testículo , Proteínas Hedgehog/metabolismo , Humanos , Leptina/metabolismo , Células Intersticiais do Testículo/metabolismo , Masculino , Testículo/metabolismo , Testosterona
20.
Clin Cancer Res ; 28(9): 1948-1965, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35135840

RESUMO

PURPOSE: Although chemotherapies kill most cancer cells, stem cell-enriched survivors seed metastasis, particularly in triple-negative breast cancers (TNBC). TNBCs arise from and are enriched for tumor stem cells. Here, we tested if inhibition of DOT1L, an epigenetic regulator of normal tissue stem/progenitor populations, would target TNBC stem cells. EXPERIMENTAL DESIGN: Effects of DOT1L inhibition by EPZ-5676 on stem cell properties were tested in three TNBC lines and four patient-derived xenograft (PDX) models and in isolated cancer stem cell (CSC)-enriched ALDH1+ and ALDH1- populations. RNA sequencing compared DOT1L regulated pathways in ALDH1+ and ALDH1- cells. To test if EPZ-5676 decreases CSC in vivo, limiting dilution assays of EPZ-5676/vehicle pretreated ALDH1+ and ALDH1- cells were performed. Tumor latency, growth, and metastasis were evaluated. Antitumor activity was also tested in TNBC PDX and PDX-derived organoids. RESULTS: ALDH1+ TNBC cells exhibit higher DOT1L and H3K79me2 than ALDH1-. DOT1L maintains MYC expression and self-renewal in ALDH1+ cells. Global profiling revealed that DOT1L governs oxidative phosphorylation, cMyc targets, DNA damage response, and WNT activation in ALDH1+ but not in ALDH1- cells. EPZ-5676 reduced tumorspheres and ALDH1+ cells in vitro and decreased tumor-initiating stem cells and metastasis in xenografts generated from ALDH1+ but not ALDH1- populations in vivo. EPZ-5676 significantly reduced growth in vivo of one of two TNBC PDX tested and decreased clonogenic 3D growth of two other PDX-derived organoid cultures. CONCLUSIONS: DOT1L emerges as a key CSC regulator in TNBC. Present data support further clinical investigation of DOT1L inhibitors to target stem cell-enriched TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Família Aldeído Desidrogenase 1 , Linhagem Celular Tumoral , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA