Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Viruses ; 16(8)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39205182

RESUMO

Numerous Aspergillus fumigatus (Af) airborne spores are inhaled daily by humans and animals due to their ubiquitous presence. The interaction between the spores and the respiratory epithelium, as well as its impact on the epithelial barrier function, remains largely unknown. The epithelial barrier protects the respiratory epithelium against viral infections. However, it can be compromised by environmental contaminants such as pollen, thereby increasing susceptibility to respiratory viral infections, including alphaherpesvirus equine herpesvirus type 1 (EHV-1). To determine whether Af spores disrupt the epithelial integrity and enhance susceptibility to viral infections, equine respiratory mucosal ex vivo explants were pretreated with Af spore diffusate, followed by EHV-1 inoculation. Spore proteases were characterized by zymography and identified using mass spectrometry-based proteomics. Proteases of the serine protease, metalloprotease, and aspartic protease groups were identified. Morphological analysis of hematoxylin-eosin (HE)-stained sections of the explants revealed that Af spores induced the desquamation of epithelial cells and a significant increase in intercellular space at high and low concentrations, respectively. The increase in intercellular space in the epithelium caused by Af spore proteases correlated with an increase in EHV-1 infection. Together, our findings demonstrate that Af spore proteases disrupt epithelial integrity, potentially leading to increased viral infection of the respiratory epithelium.


Assuntos
Aspergillus fumigatus , Infecções por Herpesviridae , Herpesvirus Equídeo 1 , Peptídeo Hidrolases , Mucosa Respiratória , Esporos Fúngicos , Animais , Herpesvirus Equídeo 1/fisiologia , Herpesvirus Equídeo 1/patogenicidade , Aspergillus fumigatus/enzimologia , Cavalos , Mucosa Respiratória/virologia , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/veterinária , Peptídeo Hidrolases/metabolismo , Doenças dos Cavalos/virologia , Doenças dos Cavalos/microbiologia , Células Epiteliais/virologia , Células Epiteliais/microbiologia
2.
BMC Ophthalmol ; 24(1): 217, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773506

RESUMO

BACKGROUND: Only seven cases of ocular Spiroplasma infection have been reported to date, all presenting as congenital cataracts with concomitant intraocular inflammation. We describe the first case of Spiroplasma infection initially presenting as a corneal infiltrate. CASE PRESENTATION: A 1-month-old girl was referred for a corneal infiltrate in the left eye. She presented in our hospital with unilateral keratouveitis. Examination showed a stromal corneal infiltrate and dense white keratic precipitates in the left eye. Herpetic keratouveitis was suspected and intravenous acyclovir therapy was initiated. Two weeks later, the inflammation in the left eye persisted and was also noticed in the right eye. Acute angle-closure glaucoma and a cataract with dilated iris vessels extending onto the anterior lens capsule developed in the left eye. The inflammation resolved after treatment with azithromycin. Iridectomy, synechiolysis and lensectomy were performed. Bacterial metagenomic sequencing (16 S rRNA) and transmission electron microscopy revealed Spiroplasma ixodetis species in lens aspirates and biopsy. Consequently, a diagnosis of bilateral Spiroplasma uveitis was made. CONCLUSIONS: In cases of congenital cataract with concomitant intraocular inflammation, Spiroplasma infection should be considered. The purpose of this case report is to raise awareness of congenital Spiroplasma infection as a cause of severe keratouveitis, cataract and angle-closure glaucoma in newborns. Performing molecular testing on lens aspirates is essential to confirm diagnosis. Systemic macrolides are suggested as the mainstay of treatment.


Assuntos
Catarata , Infecções Oculares Bacterianas , Spiroplasma , Uveíte , Humanos , Feminino , Infecções Oculares Bacterianas/diagnóstico , Infecções Oculares Bacterianas/microbiologia , Infecções Oculares Bacterianas/complicações , Catarata/congênito , Catarata/diagnóstico , Catarata/complicações , Uveíte/diagnóstico , Uveíte/microbiologia , Uveíte/complicações , Spiroplasma/isolamento & purificação , Ceratite/diagnóstico , Ceratite/microbiologia , Recém-Nascido , Antibacterianos/uso terapêutico , Lactente
3.
Viruses ; 16(5)2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38793694

RESUMO

White spot syndrome virus (WSSV) is marked as one of the most economically devastating pathogens in shrimp aquaculture worldwide. Infection of cultured shrimp can lead to mass mortality (up to 100%). Although progress has been made, our understanding of WSSV's infection process and the virus-host-environment interaction is far from complete. This in turn hinders the development of effective mitigation strategies against WSSV. Infection models occupy a crucial first step in the research flow that tries to elucidate the infectious disease process to develop new antiviral treatments. Moreover, since the establishment of continuous shrimp cell lines is a work in progress, the development and use of standardized in vivo infection models that reflect the host-pathogen interaction in shrimp is a necessity. This review critically examines key aspects of in vivo WSSV infection model development that are often overlooked, such as standardization, (post)larval quality, inoculum type and choice of inoculation procedure, housing conditions, and shrimp welfare considerations. Furthermore, the usefulness of experimental infection models for different lines of WSSV research will be discussed with the aim to aid researchers when choosing a suitable model for their research needs.


Assuntos
Aquicultura , Interações Hospedeiro-Patógeno , Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Vírus da Síndrome da Mancha Branca 1/fisiologia , Vírus da Síndrome da Mancha Branca 1/patogenicidade , Animais , Penaeidae/virologia , Modelos Animais de Doenças
4.
Breast Cancer Res ; 26(1): 63, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605414

RESUMO

BACKGROUND: Chitinase-like proteins (CLPs) play a key role in immunosuppression under inflammatory conditions such as cancer. CLPs are enzymatically inactive and become neutralized upon binding of their natural ligand chitin, potentially reducing CLP-driven immunosuppression. We investigated the efficacy of chitin treatment in the context of triple-negative breast cancer (TNBC) using complementary mouse models. We also evaluated the immunomodulatory influence of chitin on immune checkpoint blockade (ICB) and compared its efficacy as general CLP blocker with blockade of a single CLP, i.e. chitinase 3-like 1 (CHI3L1). METHODS: Female BALB/c mice were intraductally injected with luciferase-expressing 4T1 or 66cl4 cells and systemically treated with chitin in combination with or without anti-programmed death (PD)-1 ICB. For single CLP blockade, tumor-bearing mice were treated with anti-CHI3L1 antibodies. Metastatic progression was monitored through bioluminescence imaging. Immune cell changes in primary tumors and lymphoid organs (i.e. axillary lymph nodes and spleen) were investigated through flow cytometry, immunohistochemistry, cytokine profiling and RNA-sequencing. CHI3L1-stimulated RAW264.7 macrophages were subjected to 2D lymphatic endothelial cell adhesion and 3D lymphatic integration in vitro assays for studying macrophage-mediated lymphatic remodeling. RESULTS: Chitin significantly reduced primary tumor progression in the 4T1-based model by decreasing the high production of CLPs that originate from tumor-associated neutrophils (TANs) and Stat3 signaling, prominently affecting the CHI3L1 and CHI3L3 primary tumor levels. It reduced immunosuppressive cell types and increased anti-tumorigenic T-cells in primary tumors as well as axillary lymph nodes. Chitin also significantly reduced CHI3L3 primary tumor levels and immunosuppression in the 66cl4-based model. Compared to anti-CHI3L1, chitin enhanced primary tumor growth reduction and anti-tumorigenicity. Both treatments equally inhibited lymphatic adhesion and integration of macrophages, thereby hampering lymphatic tumor cell spreading. Upon ICB combination therapy, chitin alleviated anti-PD-1 resistance in both TNBC models, providing a significant add-on reduction in primary tumor and lung metastatic growth compared to chitin monotherapy. These add-on effects occurred through additional increase in CD8α+ T-cell infiltration and activation in primary tumor and lymphoid organs. CONCLUSIONS: Chitin, as a general CLP blocker, reduces CLP production, enhances anti-tumor immunity as well as ICB responses, supporting its potential clinical relevance in immunosuppressed TNBC patients.


Assuntos
Quitina , Quitinases , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Quitina/farmacologia , Quitina/uso terapêutico , Quitinases/uso terapêutico , Terapia de Imunossupressão , Metástase Linfática , Proteínas/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia
5.
Allergy ; 79(4): 949-963, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38193259

RESUMO

BACKGROUND: IgE-mediated cow's milk allergy (IgE-CMA) is one of the first allergies to arise in early childhood and may result from exposure to various milk allergens, of which ß-lactoglobulin (BLG) and casein are the most important. Understanding the underlying mechanisms behind IgE-CMA is imperative for the discovery of novel biomarkers and the design of innovative treatment and prevention strategies. METHODS: We report a longitudinal in vivo murine model, in which two mice strains (BALB/c and C57Bl/6) were sensitized to BLG using either cholera toxin or an oil emulsion (n = 6 per group). After sensitization, mice were challenged orally, their clinical signs monitored, antibody (IgE and IgG1) and cytokine levels (IL-4 and IFN-γ) measured, and fecal samples subjected to metabolomics. The results of the murine models were further extrapolated to fecal microbiome-metabolome data from our population of IgE-CMA (n = 22) and healthy (n = 23) children (Trial: NCT04249973), on which polar metabolomics, lipidomics and 16S rRNA metasequencing were performed. In vitro gastrointestinal digestions and multi-omics corroborated the microbial origin of proposed metabolic changes. RESULTS: During mice sensitization, we observed multiple microbially derived metabolic alterations, most importantly bile acid, energy and tryptophan metabolites, that preceded allergic inflammation. We confirmed microbial dysbiosis, and its associated effect on metabolic alterations in our patient cohort, through in vitro digestions and multi-omics, which was accompanied by metabolic signatures of low-grade inflammation. CONCLUSION: Our results indicate that gut dysbiosis precedes allergic inflammation and nurtures a chronic low-grade inflammation in children on elimination diets, opening important new opportunities for future prevention and treatment strategies.


Assuntos
Microbiota , Hipersensibilidade a Leite , Humanos , Criança , Pré-Escolar , Bovinos , Feminino , Camundongos , Animais , Disbiose , RNA Ribossômico 16S , Inflamação , Alérgenos , Lactoglobulinas , Imunoglobulina E , Metaboloma
6.
Anat Histol Embryol ; 53(1): e12970, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37740674

RESUMO

The cardiac telocyte (TC) is a novel interstitial cell type with a unique ultrastructure and great potential in therapy. The present study examined its presence in the heart of chicken embryos ageing 7-15 days old (Hamburger-Hamilton [HH] stages 31-41) using transmission electron microscopy. TCs were identified across all stages in the atrial and ventricular myocardium, close to maturing cardiomyocytes, blood vessels and lymphatics. Early-stage TCs have immature features resembling mesenchymal cells. Late-stage TCs were distinct, possessing the cytoplasmic prolongations termed telopodes (Tps), which are very long and thin, usually 1-3 in number, and display a moniliform appearance and have an average thickness below 0.2 µm. TCs residing in the epicardium and endocardium were also detected. In the subepicardium near developing coronary vessels, they were localized in the cardiac stem cell niches, coexisting with cardiac stem cells and cardiomyocyte progenitors. Electron-dense structures and the release of extracellular vesicles were observed between embryonic TCs and surrounding structures, suggesting roles in intercellular communication, cardiomyocyte differentiation and maturation, angiogenesis, and stem cell nursing and guidance.


Assuntos
Galinhas , Telócitos , Embrião de Galinha , Animais , Miocárdio , Telopódios/ultraestrutura , Átrios do Coração
7.
Viruses ; 15(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37766231

RESUMO

White spot disease (WSD) is a severe viral threat to the global shrimp aquaculture industry. However, little is known about white spot syndrome virus (WSSV) transmission dynamics. Our aim was to elucidate this in Litopenaeus vannamei using peroral in vivo WSSV challenge experiments. We demonstrated that WSD progression was rapid and irreversible, leading to death within 78 h. Viral DNA shedding was detected within 6 h of disease onset. This shedding intensified over time, reaching a peak within 12 h of the time of death. Isolating shrimp (clinically healthy and diseased) from infected populations at different time points post-inoculation showed that host-to-host WSSV transmission was occurring around the time of death. Exposing sentinels to environmental components (i.e., water, feces, molts) collected from tanks housing WSSV-infected shrimp resulted in a significantly (p-value < 0.05) increased infection risk after exposure to water (1.0) compared to the risk of infection after exposure to feces (0.2) or molts (0.0). Furthermore, ingestion of WSSV-infected tissues (cannibalism) did not cause a significantly higher number of WSD cases compared to immersion in water in which the same degree of cannibalism had taken place.

8.
Vet Res ; 54(1): 34, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055856

RESUMO

Porcine enteric viral infections cause high morbidity and mortality in young piglets (<3 weeks). Later, these rates decrease with age. This age-dependent infectivity remains largely unexplored. This study investigated the changes in intestinal morphology, number of mucus-producing cells and expression level of coronavirus receptors in three age groups of pigs. Villus height and crypt depth increased with age from 3 days to 3 months in duodenum and ileum but not in mid-jejunum, where the villus height decreased from 580 µm at 3 days to 430 µm at 3 months. Enterocyte length-to-width ratio increased from 3 days to 3 months in all intestinal regions. The number of mucus-producing cells increased with age in the intestinal villi and crypts. The Brunner's glands of the duodenum contained the highest concentration of mucus-producing cells. The expression of coronavirus receptor APN was highest in the small intestinal villi at all ages. DPP4 expression slightly decreased over time in jejunum and ileum; it was highest in the ileal villi of 3-day-old piglets (70.2% of cells). ACE2 and TMPRSS2 positive cells increased with age in jejunal and ileal crypts and were particularly dominant in the ileal crypts (> 45% of cells). Except for the expression of DPP4 in the jejunum and ileum of young pigs, the expression pattern of the selected coronavirus receptors was very different and not correlated with the age-dependent susceptibility to viral infections. In contrast, the number of mucus-producing cells increased over time and may play an essential role in protecting enteric mucosae against intestinal viruses.


Assuntos
Enzima de Conversão de Angiotensina 2 , Receptores de Coronavírus , Animais , Suínos , Receptores de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Dipeptidil Peptidase 4/metabolismo , Jejuno , Íleo , Mucosa Intestinal , Envelhecimento , Muco
10.
Oncoimmunology ; 11(1): 2103277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898705

RESUMO

Aggressive triple-negative breast cancer (TNBC) is classically treated with chemotherapy. Besides direct tumor cell killing, some chemotherapeutics such as cisplatin provide additional disease reduction through stimulation of anti-tumor immunity. The cisplatin-induced immunomodulation in TNBC was here investigated in-depth using immunocompetent intraductal mouse models. Upon primary tumor transition to invasive carcinoma, cisplatin was injected systemically and significantly reduced tumor progression. Flow cytometric immunophenotyping was corroborated by immunohistochemical analyses and revealed both differential immune cell compositions and positivity for their programmed death (PD)-1 and PD-ligand (L)1 markers across body compartments, including the primary tumor, axillary lymph nodes and spleen. As key findings, a significant decrease in immunosuppressive and a concomitant increase in anti-tumor lymphocytic cell numbers were observed in the axillary lymph nodes and spleen, highlighting their importance in cisplatin-stimulated anti-tumor immunity. These immunomodulatory effects were already established following the first cisplatin dose, indicating that early cisplatin-mediated events may determine (immuno)therapeutic outcome. Furthermore, a single cisplatin dose sufficed to alleviate anti-PD-1 resistance in a 4T1-based model, providing add-on disease reduction without toxic side effects as seen upon multiple cisplatin dosing. Overall, these results highlight cisplatin as immunotherapeutic ally in TNBC, providing durable immunostimulation, even after a single dose.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Modelos Animais de Doenças , Humanos , Imunomodulação , Imunofenotipagem , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
11.
J Virol ; 96(12): e0219921, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35604216

RESUMO

Pseudorabies virus (PRV) is a porcine alphaherpesvirus and the causative agent of Aujeszky's disease. Successful eradication campaigns against PRV have largely relied on the use of potent PRV vaccines. The live attenuated Bartha strain, which was produced by serial passaging in cell culture, represents one of the hallmark PRV vaccines. Despite the robust protection elicited by Bartha vaccination, very little is known about the immunogenicity of the Bartha strain. Previously, we showed that Bartha-infected epithelial cells trigger plasmacytoid dendritic cells (pDC) to produce much higher levels of type I interferons than cells infected with wild-type PRV. Here, we show that this Bartha-induced pDC hyperactivation extends to other important cytokines, including interleukin-12/23 (IL-12/23) and tumor necrosis factor alpha (TNF-α) but not IL-6. Moreover, Bartha-induced pDC hyperactivation was found to be due to the strongly increased production of extracellular infectious virus (heavy particles [H-particles]) early in infection of epithelial cells, which correlated with a reduced production of noninfectious light particles (L-particles). The Bartha genome is marked by a large deletion in the US region affecting the genes encoding US7 (gI), US8 (gE), US9, and US2. The deletion of the US2 and gE/gI genes was found to be responsible for the observed increase in extracellular virus production by infected epithelial cells and the resulting increased pDC activation. The deletion of gE/gI also suppressed L-particle production. In conclusion, the deletion of US2 and gE/gI in the genome of the PRV vaccine strain Bartha results in the enhanced production of extracellular infectious virus in infected epithelial cells and concomitantly leads to the hyperactivation of pDC. IMPORTANCE The pseudorabies virus (PRV) vaccine strain Bartha has been and still is critical in the eradication of PRV in numerous countries. However, little is known about how this vaccine strain interacts with host cells and the host immune system. Here, we report the surprising observation that Bartha-infected epithelial porcine cells rapidly produce increased amounts of extracellular infectious virus compared to wild-type PRV-infected cells, which in turn potently stimulate porcine plasmacytoid dendritic cells (pDC). We found that this phenotype depends on the deletion of the genes encoding US2 and gE/gI. We also found that Bartha-infected cells secrete fewer pDC-inhibiting light particles (L-particles), which appears to be caused mainly by the deletion of the genes encoding gE/gI. These data generate novel insights into the interaction of the successful Bartha vaccine with epithelial cells and pDC and may therefore contribute to the development of vaccines against other (alphaherpes)viruses.


Assuntos
Células Dendríticas , Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Animais , Células Dendríticas/imunologia , Herpesvirus Suídeo 1/genética , Imunogenicidade da Vacina , Pseudorraiva/prevenção & controle , Vacinas contra Pseudorraiva/genética , Suínos , Doenças dos Suínos/prevenção & controle , Vacinas Atenuadas , Proteínas do Envelope Viral/genética
12.
Viruses ; 14(1)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35062352

RESUMO

Respiratory disease in horses is caused by a multifactorial complex of infectious agents and environmental factors. An important pathogen in horses is equine herpesvirus type 1 (EHV-1). During co-evolution with this ancient alphaherpesvirus, the horse's respiratory tract has developed multiple antiviral barriers. However, these barriers can become compromised by environmental threats. Pollens and mycotoxins enhance mucosal susceptibility to EHV-1 by interrupting cell junctions, allowing the virus to reach its basolateral receptor. Whether bacterial toxins also play a role in this impairment has not been studied yet. Here, we evaluated the role of α-hemolysin (Hla) and adenylate cyclase (ACT), toxins derived from the facultative pathogenic bacterium Staphylococcus aureus (S. aureus) and the primary pathogen Bordetella bronchiseptica (B. bronchiseptica), respectively. Equine respiratory mucosal explants were cultured at an air-liquid interface and pretreated with these toxins, prior to EHV-1 inoculation. Morphological analysis of hematoxylin-eosin (HE)-stained sections of the explants revealed a decreased epithelial thickness upon treatment with both toxins. Additionally, the Hla toxin induced detachment of epithelial cells and a partial loss of cilia. These morphological changes were correlated with increased EHV-1 replication in the epithelium, as assessed by immunofluorescent stainings and confocal microscopy. In view of these results, we argue that the ACT and Hla toxins increase the susceptibility of the epithelium to EHV-1 by disrupting the epithelial barrier function. In conclusion, this study is the first to report that bacterial exotoxins increase the horse's sensitivity to EHV-1 infection. Therefore, we propose that horses suffering from infection by S. aureus or B. bronchiseptica may be more susceptible to EHV-1 infection.


Assuntos
Toxinas Bacterianas/farmacologia , Bordetella bronchiseptica/metabolismo , Infecções por Herpesviridae/tratamento farmacológico , Infecções por Herpesviridae/veterinária , Herpesvirus Equídeo 1/efeitos dos fármacos , Doenças dos Cavalos/virologia , Doenças Respiratórias/virologia , Staphylococcus aureus/metabolismo , Animais , Células Epiteliais/virologia , Proteínas Hemolisinas , Cavalos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/virologia , Replicação Viral/efeitos dos fármacos
13.
Nat Commun ; 12(1): 6612, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785663

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is not always confined to the respiratory system, as it impacts people on a broad clinical spectrum from asymptomatic to severe systemic manifestations resulting in death. Further, accumulation of intra-host single nucleotide variants during prolonged SARS-CoV-2 infection may lead to emergence of variants of concern (VOCs). Still, information on virus infectivity and intra-host evolution across organs is sparse. We report a detailed virological analysis of thirteen postmortem coronavirus disease 2019 (COVID-19) cases that provides proof of viremia and presence of replication-competent SARS-CoV-2 in extrapulmonary organs of immunocompromised patients, including heart, kidney, liver, and spleen (NCT04366882). In parallel, we identify organ-specific SARS-CoV-2 genome diversity and mutations of concern N501Y, T1027I, and Y453F, while the patient had died long before reported emergence of VOCs. These mutations appear in multiple organs and replicate in Vero E6 cells, highlighting their infectivity. Finally, we show two stages of fatal disease evolution based on disease duration and viral loads in lungs and plasma. Our results provide insights about the pathogenesis and intra-host evolution of SARS-CoV-2 and show that COVID-19 treatment and hygiene measures need to be tailored to specific needs of immunocompromised patients, even when respiratory symptoms cease.


Assuntos
COVID-19/patologia , Mutação , SARS-CoV-2/genética , Replicação Viral/fisiologia , Idoso , Idoso de 80 Anos ou mais , Animais , Autopsia , COVID-19/genética , COVID-19/imunologia , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Feminino , Genoma Viral , Humanos , Hospedeiro Imunocomprometido , Masculino , Pessoa de Meia-Idade , Especificidade de Órgãos , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação
14.
Front Vet Sci ; 8: 639771, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996970

RESUMO

Augmented renal clearance (ARC) as observed in the critically ill (pediatric) population can have a major impact on the pharmacokinetics and posology of renally excreted drugs. Although sepsis has been described as a major trigger in the development of ARC in human critically ill patients, mechanistic insights on ARC are currently lacking. An appropriate ARC animal model could contribute to reveal these underlying mechanisms. In this exploratory study, a state of ARC was induced in 8-week-old piglets. Conscious piglets were continuously infused over 36 h with lipopolysaccharides (LPS) from Escherichia coli (O111:B4) to induce sepsis and subsequently trigger ARC. To study the dose-dependent effect of LPS on the renal function, three different doses (0.75, 2.0, 5.0 µg/kg/h) were administered (two ♂ piglets/dose, one sham piglet), in combination with fluid administration (0.9% NaCl) at 6 ml/kg/h. Single boluses of renal markers, i.e., creatinine [40 mg/kg body weight (BW)], iohexol (64.7 mg/kg BW), and para-aminohippuric acid (PAH, 10 mg/kg BW) were administered intravenously to evaluate the effect of LPS on the renal function. Clinical parameters were monitored periodically. Blood sampling was performed to determine the effect on hematology, neutrophil gelatinase-associated lipocalin, and prostaglandin E2 plasma levels. All piglets that were continuously infused with LPS displayed an elevated body temperature, heart rhythm, and respiratory rate ~1-3 h after start of the infusion. After infusion, considerably higher total body clearances of iohexol, creatinine, and PAH were observed, independent of the administration of LPS and/or its dose. Since also the sham piglet, receiving no LPS, demonstrated a comparable increase in renal function, the contribution of fluid administration to the development of ARC should be further evaluated.

15.
Anat Histol Embryol ; 50(3): 637-644, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33724525

RESUMO

In contrast to other mammals, the large variation in dog sizes is not accompanied by any significant genetic re-organization. In order to study the relationship between body mass, limb length and the functional anatomical muscle parameters of the canine hind limb, a large dataset comprising of muscle masses, optimal muscle fibre lengths and physiological cross-sectional area's (PCSA) were acquired for twenty-five muscles in ten dogs of sizes varying between 20 kg and 52 kg. The potential of body mass and limb length for reliably scaling individual muscle masses, optimal muscle fibre lengths and PCSA's were examined. For the majority of the muscles of the canine hind limb, neither body mass nor limb length were reliable scaling parameter for either muscle masses, PCSA's and optimal fibre length. These results indicate the need of a breed-specific approach to musculoskeletal modelling in future canine musculoskeletal research.


Assuntos
Extremidade Inferior , Músculos , Animais , Cães , Membro Posterior , Músculo Esquelético
16.
NPJ Breast Cancer ; 7(1): 27, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731699

RESUMO

c-MET is considered a driver of cancer progression, impacting tumor growth and tumor-supporting stroma. Here, we investigated the therapeutic efficacy of OMO-1, a potent and selective c-MET inhibitor, in an immunocompetent intraductal mouse model for triple-negative breast cancer (TNBC). OMO-1 reduced non-c-MET addicted 4T1 tumor progression dose dependently as monotherapeutic and provided additional disease reduction in combination with cisplatin. At the stromal level, OMO-1 significantly reduced neutrophil infiltration in 4T1 tumors, promoted immune activation, and enhanced cisplatin-mediated reduction of tumor-associated macrophages. OMO-1 treatment also reduced 4T1 tumor hypoxia and increased expression of pericyte markers, indicative for vascular maturation. Corroborating this finding, cisplatin delivery to the 4T1 primary tumor was enhanced upon OMO-1 treatment, increasing cisplatin DNA-adduct levels and tumor cell death. Although verification in additional cell lines is warranted, our findings provide initial evidence that TNBC patients may benefit from OMO-1 treatment, even in cases of non-c-MET addicted tumors.

17.
J Comp Pathol ; 182: 58-66, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33494909

RESUMO

Intracellular epidermal inclusions were detected within histological sections of skin biopsies from two panther chameleons (Furcifer pardalis) with chronic cheilitis. Transmission electron microscopy (TEM) confirmed the abundant presence of icosahedral intracytoplasmic and intranuclear viral particles in infected keratinocytes, with an average diameter of 120-125 nm, consistent with herpesviruses (HVs). TEM also revealed the presence of virions in intercellular spaces and keratinocyte nuclei and features suggestive of capsid assembly, nuclear egress with primary envelopment and anterograde transport leading to virion assembly and release. Polymerase chain reaction (PCR) primers targeting a conserved region of herpesvirus DNA-dependent DNA polymerase were used to amplify and sequence a product from a nested HV PCR performed on skin biopsies of both chameleons. Comparative sequence analysis indicates that the virus detected in both chameleons was a novel member of the Alphaherpesvirinae, which we refer to as chamaeleonid herpesvirus 1 (chamHV 1). Based on the identical findings in both chameleons, we consider chamHV 1 to be a candidate aetiological agent of cheilitis in panther chameleons. This is the first report of skin lesions in a chameleon species associated with HV infection.


Assuntos
Queilite , Infecções por Herpesviridae/veterinária , Herpesviridae , Lagartos , Animais , Queilite/veterinária , Queilite/virologia
18.
Front Immunol ; 11: 555305, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193323

RESUMO

The current study was designed to evaluate the pathogenesis, pathology and immune response of female genital tract infection with Chlamydia trachomatis L2c, the most recently discovered lymphogranuloma venereum strain, using a porcine model of sexually transmitted infections. Pigs were mock infected, infected once or infected and re-infected intravaginally, and samples were obtained for chlamydial culture, gross and microscopic pathology, and humoral and cell-mediated immunity. Intravaginal inoculation of pigs with this bacterium resulted in an infection that was confined to the urogenital tract, where inflammation and pathology were caused that resembled what is seen in human infection. Re-infection resulted in more severe gross pathology than primary infection, and chlamydial colonization of the urogenital tract was similar for primary infected and re-infected pigs. This indicates that primary infection failed to induce protective immune responses against re-infection. Indeed, the proliferative responses of mononuclear cells from blood and lymphoid tissues to C. trachomatis strain L2c were never statistically different among groups, suggesting that C. trachomatis-specific lymphocytes were not generated following infection or re-infection. Nevertheless, anti-chlamydial antibodies were elicited in sera and vaginal secretions after primary infection and re-infection, clearly resulting in a secondary systemic and mucosal antibody response. While primary infection did not protect against reinfection, the porcine model is relevant for evaluating immune and pathogenic responses for emerging and known C. trachomatis strains to advance drug and/or vaccine development in humans.


Assuntos
Infecções por Chlamydia/veterinária , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Formação de Anticorpos/imunologia , Biópsia , Chlamydia trachomatis , Feminino , Imunidade nas Mucosas , Imuno-Histoquímica , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Reinfecção , Suínos , Doenças dos Suínos/patologia
19.
Toxins (Basel) ; 12(11)2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207646

RESUMO

Citrinin (CIT) is a polyketide mycotoxin occurring in a variety of food and feedstuff, among which cereal grains are the most important contaminated source. Pigs and poultry are important livestock animals frequently exposed to mycotoxins, including CIT. Concerns are rising related to the toxic, and especially the potential nephrotoxic, properties of CIT. The purpose of this study was to clarify the histopathological effects on kidneys, liver, jejunum and duodenum of pigs, broiler chickens and laying hens receiving CIT contaminated feed. During 3 weeks, pigs (n = 16) were exposed to feed containing 1 mg CIT/kg feed or to control feed (n = 4), while 2 groups of broiler chickens and laying hens (n = 8 per group) received 0.1 mg CIT/kg feed (lower dose group) and 3 or 3.5 mg CIT/kg feed (higher dose group), respectively, or control feed (n = 4). CIT concentrations were quantified in plasma, kidneys, liver, muscle and eggs using a validated ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. Kidneys, liver, duodenum and jejunum were evaluated histologically using light microscopy, while the kidneys were further examined using transmission electron microscopy (TEM). Histopathology did not reveal major abnormalities at the given contamination levels. However, a significant increase of swollen and degenerated mitochondria in renal cortical cells from all test groups were observed (p < 0.05). These observations could be related to oxidative stress, which is the major mechanism of CIT toxicity. Residues of CIT were detected in all collected tissues, except for muscle and egg white from layers in the lowest dose group, and egg white from layers in the highest dose group. CIT concentrations in plasma ranged between 0.1 (laying hens in lower dose group) and 20.8 ng/mL (pigs). In tissues, CIT concentrations ranged from 0.6 (muscle) to 20.3 µg/kg (liver) in pigs, while concentrations in chickens ranged from 0.1 (muscle) to 70.2 µg/kg (liver). Carry-over ratios from feed to edible tissues were between 0.1 and 2% in pigs, and between 0.1 and 6.9% in chickens, suggesting a low contribution of pig and poultry tissue-derived products towards the total dietary CIT intake for humans.


Assuntos
Ração Animal , Citrinina/farmacocinética , Citrinina/toxicidade , Contaminação de Alimentos , Tecido Adiposo/metabolismo , Animais , Galinhas , Citrinina/sangue , Dieta , Ovos/análise , Feminino , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Masculino , Músculos/metabolismo , Pele/metabolismo , Suínos
20.
Proc Natl Acad Sci U S A ; 117(45): 28374-28383, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097672

RESUMO

Viruses, such as white spot syndrome virus, and bacteria, such as Vibrio species, wreak havoc in shrimp aquaculture [C. M. Escobedo-Bonilla et al., J. Fish. Dis. 31, 1-18 (2008)]. As the main portal of entry for shrimp-related pathogens remain unclear, infectious diseases are difficult to prevent and control. Because the cuticle is a strong pathogen barrier, regions lacking cuticular lining, such as the shrimp's excretory organ, "the antennal gland," are major candidate entry portals [M. Corteel et al., Vet. Microbiol. 137, 209-216 (2009)]. The antennal gland, up until now morphologically underexplored, is studied using several imaging techniques. Using histology-based three-dimensional technology, we demonstrate that the antennal gland resembles a kidney, connected to a urinary bladder with a nephropore (exit opening) and a complex of diverticula, spread throughout the cephalothorax. Micromagnetic resonance imaging of live shrimp not only confirms the histology-based model, but also indicates that the filling of the diverticula is linked to the molting cycle and possibly involved therein. Based on function and complexity, we propose to rename the antennal gland as the "nephrocomplex." By an intrabladder inoculation, we showed high susceptibility of this nephrocomplex to both white spot syndrome virus and Vibrio infection compared to peroral inoculation. An induced drop in salinity allowed the virus to enter the nephrocomplex in a natural way and caused a general infection followed by death; fluorescent beads were used to demonstrate that particles may indeed enter through the nephropore. These findings pave the way for oriented disease control in shrimp.


Assuntos
Muda/fisiologia , Penaeidae/microbiologia , Penaeidae/virologia , Glândulas Sebáceas/microbiologia , Glândulas Sebáceas/patologia , Animais , Aquicultura , Salinidade , Glândulas Sebáceas/diagnóstico por imagem , Glândulas Sebáceas/virologia , Vibrio/patogenicidade , Vibrioses/patologia , Vibrioses/veterinária , Internalização do Vírus , Vírus da Síndrome da Mancha Branca 1/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA