Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antiviral Res ; 227: 105907, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772503

RESUMO

Respiratory syncytial virus (RSV) can cause pulmonary complications in infants, elderly and immunocompromised patients. While two vaccines and two prophylactic monoclonal antibodies are now available, treatment options are still needed. JNJ-7184 is a non-nucleoside inhibitor of the RSV-Large (L) polymerase, displaying potent inhibition of both RSV-A and -B strains. Resistance selection and hydrogen-deuterium exchange experiments suggest JNJ-7184 binds RSV-L in the connector domain. JNJ-7184 prevents RSV replication and transcription by inhibiting initiation or early elongation. JNJ-7184 is effective in air-liquid interface cultures and therapeutically in neonatal lambs, acting to drastically reverse the appearance of lung pathology.


Assuntos
Antivirais , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Replicação Viral , Antivirais/farmacologia , Antivirais/química , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/virologia , Animais , Humanos , Replicação Viral/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Ovinos , Farmacorresistência Viral , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Proteínas Virais/genética , Pulmão/virologia
2.
Antimicrob Agents Chemother ; 55(12): 5723-31, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21896904

RESUMO

TMC310911 is a novel human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI) structurally closely related to darunavir (DRV) but with improved virological characteristics. TMC310911 has potent activity against wild-type (WT) HIV-1 (median 50% effective concentration [EC(50)], 14 nM) and a wide spectrum of recombinant HIV-1 clinical isolates, including multiple-PI-resistant strains with decreased susceptibility to currently approved PIs (fold change [FC] in EC(50), >10). For a panel of 2,011 recombinant clinical isolates with decreased susceptibility to at least one of the currently approved PIs, the FC in TMC310911 EC(50) was ≤ 4 for 82% of isolates and ≤ 10 for 96% of isolates. The FC in TMC310911 EC(50) was ≤ 4 and ≤ 10 for 72% and 94% of isolates with decreased susceptibility to DRV, respectively. In vitro resistance selection (IVRS) experiments with WT virus and TMC310911 selected for mutations R41G or R41E, but selection of resistant virus required a longer time than IVRS performed with WT virus and DRV. IVRS performed with r13025, a multiple-PI-resistant recombinant clinical isolate, and TMC310911 selected for mutations L10F, I47V, and L90M (FC in TMC310911 EC(50) = 16). IVRS performed with r13025 in the presence of DRV required less time and resulted in more PI resistance-associated mutations (V32I, I50V, G73S, L76V, and V82I; FC in DRV EC(50) = 258). The activity against a comprehensive panel of PI-resistant mutants and the limited in vitro selection of resistant viruses under drug pressure suggest that TMC310911 represents a potential drug candidate for the management of HIV-1 infection for a broad range of patients, including those with multiple PI resistance.


Assuntos
Farmacorresistência Viral/genética , Infecções por HIV/virologia , Inibidores da Protease de HIV/farmacologia , Protease de HIV/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Linhagem Celular , Cristalografia por Raios X , Darunavir , Protease de HIV/química , Protease de HIV/genética , Inibidores da Protease de HIV/química , HIV-1/enzimologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mutação , Sulfonamidas/química , Sulfonamidas/farmacologia
3.
Antiviral Res ; 91(2): 167-76, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21669228

RESUMO

Raltegravir is the first integrase strand-transfer inhibitor (INSTI) approved for use in highly active antiretroviral therapy (HAART) for the management of HIV infection. Resistance to antiretrovirals can compromise the efficacy of HAART regimens. Therefore it is important to understand the emergence of resistance to RAL and cross-resistance to other INSTIs including potential second-generation INSTIs such as MK-2048. We have now studied the question of whether in vitro resistance selection (IVRS) with RAL initiated with viruses derived from clinical isolates would result in selection of resistance mutations consistent with those arising during treatment regimens with HAART containing RAL. Some correlation was observed between the primary mutations selected in vitro and during therapy, initiated with viruses with identical IN sequences. Additionally, phenotypic cross-resistance conferred by specific mutations to RAL and MK-2048 was quantified. N155H, a RAL-associated primary resistance mutation, was selected after IVRS with MK-2048, suggesting similar mechanisms of resistance to RAL and MK-2048. This was confirmed by phenotypic analysis of 766 clonal viruses harboring IN sequences isolated at the point of virological failure from 106 patients on HAART (including RAL), where mutation Q148H/K/R together with additional secondary mutations conferred reduced susceptibility to both RAL and MK-2048. A homology model of full length HIV-1 integrase complexed with viral DNA and RAL or MK-2048, based on an X-ray structure of the prototype foamy virus integrase-DNA complex, was used to explain resistance to RAL and cross-resistance to MK-2048. These findings will be important for the further discovery and profiling of next-generation INSTIs.


Assuntos
Farmacorresistência Viral , Inibidores de Integrase de HIV/farmacologia , HIV-1/efeitos dos fármacos , Integrases/genética , Pirrolidinonas/farmacologia , Terapia Antirretroviral de Alta Atividade , Linhagem Celular , Códon/genética , Genótipo , Inibidores de Integrase de HIV/química , HIV-1/genética , HIV-1/isolamento & purificação , HIV-1/patogenicidade , Humanos , Integrases/metabolismo , Testes de Sensibilidade Microbiana/métodos , Modelos Moleculares , Estrutura Molecular , Mutação , Fenótipo , Plasma/virologia , Pirrolidinonas/química , Quinolonas/química , Quinolonas/farmacologia , Raltegravir Potássico , Transfecção
4.
Virology ; 402(2): 338-46, 2010 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-20421122

RESUMO

Emergence of resistance to raltegravir reduces its treatment efficacy in HIV-1-infected patients. To delineate the effect of resistance mutations on viral susceptibility to integrase inhibitors, in vitro resistance selections with raltegravir and with MK-2048, an integrase inhibitor with a second-generation-like resistance profile, were performed. Mutation Q148R arose in four out of six raltegravir-selected resistant viruses. In addition, mutations Q148K and N155H were selected. In the same time frame, no mutations were selected with MK-2048. Q148H/K/R and N155H conferred resistance to raltegravir, but only minor changes in susceptibility to MK-2048. V54I, a previously unreported mutation, selected with raltegravir, was identified as a possible compensation mutation. Mechanisms by which N155H, Q148H/K/R, Y143R and E92Q confer resistance are proposed based on a structural model of integrase. These data improve the understanding of resistance against raltegravir and cross-resistance to MK-2048 and other integrase inhibitors, which will aid in the discovery of second-generation integrase inhibitors.


Assuntos
Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/genética , HIV-1/efeitos dos fármacos , Mutação de Sentido Incorreto , Pirrolidinonas/farmacologia , Substituição de Aminoácidos/genética , Análise Mutacional de DNA , Integrase de HIV/química , HIV-1/genética , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína , Raltegravir Potássico
5.
Proc Natl Acad Sci U S A ; 107(1): 308-13, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-19966279

RESUMO

Six-helix bundle (6HB) formation is an essential step for many viruses that rely on a class I fusion protein to enter a target cell and initiate replication. Because the binding modes of small molecule inhibitors of 6HB formation are largely unknown, precisely how they disrupt 6HB formation remains unclear, and structure-based design of improved inhibitors is thus seriously hampered. Here we present the high resolution crystal structure of TMC353121, a potent inhibitor of respiratory syncytial virus (RSV), bound at a hydrophobic pocket of the 6HB formed by amino acid residues from both HR1 and HR2 heptad-repeats. Binding of TMC353121 stabilizes the interaction of HR1 and HR2 in an alternate conformation of the 6HB, in which direct binding interactions are formed between TMC353121 and both HR1 and HR2. Rather than completely preventing 6HB formation, our data indicate that TMC353121 inhibits fusion by causing a local disturbance of the natural 6HB conformation.


Assuntos
Antivirais/metabolismo , Benzimidazóis/metabolismo , Piridinas/metabolismo , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/metabolismo , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Sequência de Aminoácidos , Antivirais/química , Antivirais/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacologia , Fusão Celular , Cristalografia por Raios X , Células HeLa , Humanos , Fusão de Membrana/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Estrutura Secundária de Proteína , Piridinas/química , Piridinas/farmacologia , Sequências Repetitivas de Aminoácidos , Vírus Sincicial Respiratório Humano/química , Alinhamento de Sequência , Relação Estrutura-Atividade , Proteínas Virais de Fusão/antagonistas & inibidores , Proteínas Virais de Fusão/genética
6.
J Virol ; 82(21): 10366-74, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18715920

RESUMO

Integration of viral DNA into the host chromosome is an essential step in the life cycle of retroviruses and is facilitated by the viral integrase enzyme. The first generation of integrase inhibitors recently approved or currently in late-stage clinical trials shows great promise for the treatment of human immunodeficiency virus (HIV) infection, but virus is expected to develop resistance to these drugs. Therefore, we used a novel resistance selection protocol to follow the emergence of resistant HIV in the presence of the integrase inhibitor elvitegravir (GS-9137). We find the primary resistance-conferring mutations to be Q148R, E92Q, and T66I and demonstrate that they confer a reduction in susceptibility not only to elvitegravir but also to raltegravir (MK-0518) and other integrase inhibitors. The locations of the mutations are highlighted in the catalytic sites of integrase, and we correlate the mutations with expected drug-protein contacts. In addition, mutations that do not confer reduced susceptibility when present alone (H114Y, L74M, R20K, A128T, E138K, and S230R) are also discussed in relation to their position in the catalytic core domain and their proximity to known structural features of integrase. These data broaden the understanding of antiviral resistance against integrase inhibitors and may give insight facilitating the discovery of second-generation compounds.


Assuntos
Farmacorresistência Viral , Integrase de HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/genética , Inibidores de Integrase/farmacologia , Mutação de Sentido Incorreto , Quinolonas/farmacologia , Domínio Catalítico , Análise Mutacional de DNA , Integrase de HIV/química , Humanos , Modelos Moleculares , Estrutura Molecular
7.
J Virol ; 80(24): 12283-92, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17020946

RESUMO

We have discovered a novel class of human immunodeficiency virus (HIV) reverse transcriptase (RT) inhibitors that block the polymerization reaction in a mode distinct from those of the nucleoside or nucleotide RT inhibitors (NRTIs) and nonnucleoside RT inhibitors (NNRTIs). For this class of indolopyridone compounds, steady-state kinetics revealed competitive inhibition with respect to the nucleotide substrate. Despite substantial structural differences with classical chain terminators or natural nucleotides, these data suggest that the nucleotide binding site of HIV RT may accommodate this novel class of RT inhibitors. To test this hypothesis, we have studied the mechanism of action of the prototype compound indolopyridone-1 (INDOPY-1) using a variety of complementary biochemical tools. Time course experiments with heteropolymeric templates showed "hot spots" for inhibition following the incorporation of pyrimidines (T>C). Moreover, binding studies and site-specific footprinting experiments revealed that INDOPY-1 traps the complex in the posttranslocational state, preventing binding and incorporation of the next complementary nucleotide. The novel mode of action translates into a unique resistance profile. While INDOPY-1 susceptibility is unaffected by mutations associated with NNRTI or multidrug NRTI resistance, mutations M184V and Y115F are associated with decreased susceptibility, and mutation K65R confers hypersusceptibility to INDOPY-1. This resistance profile provides additional evidence for active site binding. In conclusion, this class of indolopyridones can occupy the nucleotide binding site of HIV RT by forming a stable ternary complex whose stability is mainly dependent on the nature of the primer 3' end.


Assuntos
Replicação do DNA/efeitos dos fármacos , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/enzimologia , Indóis/farmacologia , Nitrilas/farmacologia , Piridonas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Transcriptase Reversa do HIV/genética , Indóis/síntese química , Indóis/química , Cinética , Nitrilas/síntese química , Nitrilas/química , Piridonas/síntese química , Piridonas/química , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA