Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Front Genet ; 15: 1392527, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38836037

RESUMO

Background: Variants in the MYBPC3 gene are a frequent cause of hypertrophic cardiomyopathy (HCM) but display a large phenotypic heterogeneity. Founder mutations are often believed to be more benign as they prevailed despite potential negative selection pressure. We detected a pathogenic variant in MYBPC3 (del exon 23-26) in several probands. We aimed to assess the presence of a common haplotype and to describe the cardiac characteristics, disease severity and long-term outcome of mutation carriers. Methods: Probands with HCM caused by a pathogenic deletion of exon 23-26 of MYBPC3 were identified through genetic screening using a gene panel encompassing 59 genes associated with cardiomyopathies in a single genetic center in Belgium. Cascade screening of first-degree relatives was performed, and genotype positive relatives were further phenotyped. Clinical characteristics were collected from probands and relatives. Cardiac outcomes included death, heart transplantation, life-threatening arrhythmia, heart failure hospitalization or septal reduction therapy. Haplotype analysis, using microsatellite markers surrounding MYBPC3, was performed in all index patients to identify a common haplotype. The age of the founder variant was estimated based on the size of the shared haplotype using a linkage-disequilibrium based approach. Results: We identified 24 probands with HCM harbouring the MYBPC3 exon 23-26 deletion. Probands were on average 51 ± 16 years old at time of clinical HCM diagnosis and 62 ± 10 years old at time of genetic diagnosis. A common haplotype of 1.19 Mb was identified in all 24 probands, with 19 of the probands sharing a 13.8 Mb haplotype. The founder event was estimated to have happened five generations, or 175-200 years ago, around the year 1830 in central Flanders. Through cascade screening, 59 first-degree relatives were genetically tested, of whom 37 (62.7%) were genotype positive (G+) and 22 (37.3%) genotype negative (G-). They were on average 38 ± 19 years old at time of genetic testing. Subsequent clinical assessment revealed a HCM phenotype in 19 (51.4%) G+ relatives. Probands were older (63 ± 10 vs. 42 ± 21 years; p < 0.001) and had more severe phenotypes than G+ family members, presenting with more symptoms (50% vs. 13.5%; p = 0.002), arrhythmia (41.7% vs. 12.9%, p = 0.014), more overt hypertrophy and left ventricular outflow tract obstruction (43.5% vs. 3.0%; p < 0.001). Male G+ relatives more often had a HCM phenotype (78.6% vs. 34.8%; p = 0.010) and were more severely affected than females. At the age of 50, a penetrance of 78.6% was observed, defined as the presence of HCM in 11 of 14 G+ relatives with age ≥50 years. Overall, 20.3% of all variant carriers developed one of the predefined cardiac outcomes after a median follow-up of 5.5 years with an average age of 50 (±21) years. Conclusion: A Belgian founder variant, an exon 23-26 deletion in MYBPC3, was identified in 24 probands and 37 family members. The variant is characterized by a high penetrance of 78.6% at the age of 50 years but has variable phenotypic expression. Adverse outcomes were observed in 20.3% of patients during follow-up.

2.
Cardiooncology ; 10(1): 26, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689299

RESUMO

BACKGROUND: Variants in cardiomyopathy genes have been identified in patients with cancer therapy-related cardiac dysfunction (CTRCD), suggesting a genetic predisposition for the development of CTRCD. The diagnostic yield of genetic testing in a CTRCD population compared to a cardiomyopathy patient cohort is not yet known and information on which genes should be assessed in this population is lacking. METHODS: We retrospectively included 46 cancer patients with a history of anthracycline induced CTRCD (defined as a decrease in left ventricular ejection fraction (LVEF) to < 50% and a ≥ 10% reduction from baseline by echocardiography). Genetic testing was performed for 59 established cardiomyopathy genes. Only variants of uncertain significance and (likely) pathogenic variants were included. Diagnostic yield of genetic testing was compared with a matched cohort of patients with dilated cardiomyopathy (DCM, n = 46) and a matched cohort of patients without cardiac disease (n = 111). RESULTS: Average LVEF at time of CTRCD diagnosis was 30.1 ± 11.0%. Patients were 52.9 ± 14.6 years old at time of diagnosis and 30 (65.2%) were female. Most patients were treated for breast cancer or lymphoma, with a median doxorubicin equivalent dose of 300 mg/m2 [112.5-540.0]. A genetic variant, either pathogenic, likely pathogenic or of uncertain significance, was identified in 29/46 (63.0%) of patients with CTRCD, which is similar to the DCM cohort (34/46, 73.9%, p = 0.262), but significantly higher than in the negative control cohort (47/111, 39.6%, p = 0.018). Variants in TTN were the most prevalent in the CTRCD cohort (43% of all variants). All (likely) pathogenic variants identified in the CTRCD cohort were truncating variants in TTN. There were no significant differences in severity of CTRCD and in recovery rate in variant-harbouring individuals versus non-variant harbouring individuals. CONCLUSIONS: In this case-control study, cancer patients with anthracycline-induced CTRCD have an increased burden of genetic variants in cardiomyopathy genes, similar to a DCM cohort. If validated in larger prospective studies, integration of genetic data in risk prediction models for CTRCD may guide cancer treatment. Moreover, genetic results have important clinical impact, both for the patient in the setting of precision medicine, as for the family members that will receive genetic counselling.

3.
NPJ Genom Med ; 9(1): 22, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531898

RESUMO

Pathogenic loss-of-function variants in BGN, an X-linked gene encoding biglycan, are associated with Meester-Loeys syndrome (MRLS), a thoracic aortic aneurysm/dissection syndrome. Since the initial publication of five probands in 2017, we have considerably expanded our MRLS cohort to a total of 18 probands (16 males and 2 females). Segregation analyses identified 36 additional BGN variant-harboring family members (9 males and 27 females). The identified BGN variants were shown to lead to loss-of-function by cDNA and Western Blot analyses of skin fibroblasts or were strongly predicted to lead to loss-of-function based on the nature of the variant. No (likely) pathogenic missense variants without additional (predicted) splice effects were identified. Interestingly, a male proband with a deletion spanning the coding sequence of BGN and the 5' untranslated region of the downstream gene (ATP2B3) presented with a more severe skeletal phenotype. This may possibly be explained by expressional activation of the downstream ATPase ATP2B3 (normally repressed in skin fibroblasts) driven by the remnant BGN promotor. This study highlights that aneurysms and dissections in MRLS extend beyond the thoracic aorta, affecting the entire arterial tree, and cardiovascular symptoms may coincide with non-specific connective tissue features. Furthermore, the clinical presentation is more severe and penetrant in males compared to females. Extensive analysis at RNA, cDNA, and/or protein level is recommended to prove a loss-of-function effect before determining the pathogenicity of identified BGN missense and non-canonical splice variants. In conclusion, distinct mechanisms may underlie the wide phenotypic spectrum of MRLS patients carrying loss-of-function variants in BGN.

4.
J Med Genet ; 61(4): 363-368, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38290823

RESUMO

BACKGROUND: SMAD6 encodes an intracellular inhibitor of the bone morphogenetic protein (BMP) signalling pathway. Until now, rare heterozygous loss-of-function variants in SMAD6 were demonstrated to increase the risk of disparate clinical disorders including cardiovascular disease, craniosynostosis and radioulnar synostosis. Only two unrelated patients harbouring biallelic SMAD6 variants presenting a complex cardiovascular phenotype and facial dysmorphism have been described. CASES: Here, we present the first two patients with craniosynostosis harbouring homozygous SMAD6 variants. The male probands, both born to healthy consanguineous parents, were diagnosed with metopic synostosis and bilateral or unilateral radioulnar synostosis. Additionally, one proband had global developmental delay. Echocardiographic evaluation did not reveal cardiac or outflow tract abnormalities. MOLECULAR ANALYSES: The novel missense (c.[584T>G];[584T>G], p.[(Val195Gly)];[(Val195Gly)]) and missense/splice-site variant (c.[817G>A];[817G>A], r.[(817g>a,817delins[a;817+2_817+228])];[(817g>a,817delins[a;817+2_817+228])], p.[(Glu273Lys,Glu273Serfs*72)];[(Glu273Lys,Glu273Serfs*72)]) both locate in the functional MH1 domain of the protein and have not been reported in gnomAD database. Functional analyses of the variants showed reduced inhibition of BMP signalling or abnormal splicing, respectively, consistent with a hypomorphic mechanism of action. CONCLUSION: Our data expand the spectrum of variants and phenotypic spectrum associated with homozygous variants of SMAD6 to include craniosynostosis.


Assuntos
Craniossinostoses , Rádio (Anatomia)/anormalidades , Sinostose , Ulna/anormalidades , Humanos , Masculino , Craniossinostoses/diagnóstico , Craniossinostoses/genética , Rádio (Anatomia)/metabolismo , Ulna/metabolismo , Mutação de Sentido Incorreto/genética , Proteína Smad6/genética , Proteína Smad6/metabolismo
5.
Front Genet ; 14: 1251675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719708

RESUMO

Background: TGFB3 variants cause Loeys-Dietz syndrome type 5, a syndromic form of thoracic aortic aneurysm and dissection. The exact disease phenotype is hard to delineate because of few identified cases and highly variable clinical representation. Methodology: We provide the results of a haplotype analysis and a medical record review of clinical features of 27 individuals from 5 different families, originating from the Campine region in Flanders, carrying the NM_003239.5(TGFB3):c.787G>C p.(Asp263His) likely pathogenic variant, dbSNP:rs796051886, ClinVar:203492. The Asp263 residue is essential for integrin binding to the Arg-Gly-Asp (RGD) motif of the TGFß3-cytokine. Results: The haplotype analysis revealed a shared haplotype of minimum 1.92 Mb and maximum 4.14 Mb, suggesting a common founder originating >400 years ago. Variable clinical features included connective tissue manifestations, non-aneurysmal cardiovascular problems such as hypertrophic cardiomyopathy, bicuspid aortic valve, mitral valve disease, and septal defects. Remarkably, only in 4 out of the 27 variant-harboring individuals, significant aortic involvement was observed. In one family, a 31-year-old male presented with type A dissection. In another family, the male proband (65 years) underwent a Bentall procedure because of bicuspid aortic valve insufficiency combined with sinus of Valsalva of 50 mm, while an 80-year-old male relative had an aortic diameter of 43 mm. In a third family, the father of the proband (75 years) presented with ascending aortic aneurysm (44 mm). Conclusion: The low penetrance (15%) of aortic aneurysm/dissection suggests that haploinsufficiency alone by the TGFB3 variant may not result in aneurysm development but that additional factors are required to provoke the aneurysm phenotype.

6.
Stem Cell Res ; 69: 103061, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36905820

RESUMO

Patients carrying IPO8 bi-allelic loss-of-function variants have a highly consistent phenotype that resembles the phenotype of Loeys-Dietz syndrome. They present with early onset thoracic aortic aneurysm (TAA) and connective tissue findings such as arachnodactyly and joint hypermobility. Other recurrent phenotypic manifestations include facial dysmorphisms, a high arched or cleft palate/bifid uvula and motor developmental delay. An iPSC line (BBANTWi011-A) was generated started from peripheral blood mononuclear cells (PBMCs) from a patient carrying a homozygous variant in the IPO8 gene (MIM: 605600, NM_006390.3: c.1420C>T, p.(Arg474*)). PBMCs were reprogrammed using the Cytotune®-iPS 2.0 Sendai Reprogramming Kit (Invitrogen). The generated iPSCs are expressing pluripotency markers and are able to differentiate into the three germ layers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares , Linhagem Celular , Mutação , Perda de Heterozigosidade
7.
Orphanet J Rare Dis ; 18(1): 23, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721196

RESUMO

BACKGROUND: The c.1124_1127delTTCA p.(Ile375Argfs*43) pathogenic variant is the most frequently identified molecular defect in the KCNQ1 gene in the cardiogenetics clinic of the Antwerp University Hospital. This variant was observed in nine families presenting with either Jervell-Lange-Nielsen syndrome or long QT syndrome (LQTS). Here, we report on the molecular, clinical and functional characterization of the KCNQ1 c.1124_1127delTTCA variant. RESULTS: Forty-one heterozygous variant harboring individuals demonstrated a predominantly mild clinical and electrophysiological phenotype, compared to individuals harboring other KCNQ1 pathogenic variants (5% symptomatic before 40 years of age, compared to 24% and 29% in p.(Tyr111Cys) and p.(Ala341Val) variant carriers, respectively, 33% with QTc ≤ 440 ms compared to 10% in p.(Tyr111Cys) and p.(Ala341Val) variant carriers). The LQTS phenotype was most comparable to that observed for the Swedish p.(Arg518*) founder mutation (7% symptomatic at any age, compared to 17% in p.(Arg518*) variant carriers, 33% with QTc ≤ 440 ms compared to 16% in p.(Arg518*) variant carriers). Surprisingly, short tandem repeat analysis did not reveal a common haplotype for all families. One KCNQ1 c.1124_1127delTTCA harboring patient was diagnosed with Brugada syndrome (BrS). The hypothesis of a LQTS/BrS overlap syndrome was supported by electrophysiological evidence for both loss-of-function and gain-of-function (acceleration of channel kinetics) in a heterologous expression system. However, BrS phenotypes were not identified in other affected individuals and allelic KCNQ1 expression testing in patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) showed nonsense mediated decay of the c.1124_1127delTTCA allele. CONCLUSIONS: The c.1124_1127delTTCA frameshift variant shows a high prevalence in our region, despite not being confirmed as a founder mutation. This variant leads to a mild LQTS phenotype in the heterozygous state. Despite initial evidence for a gain-of-function effect based on in vitro electrophysiological assessment in CHO cells and expression of the KCNQ1 c.1124_1127delTTCA allele in patient blood cells, additional testing in iPSC-CMs showed lack of expression of the mutant allele. This suggests haploinsufficiency as the pathogenic mechanism. Nonetheless, as inter-individual differences in allele expression in (iPSC-) cardiomyocytes have not been assessed, a modifying effect on the BrS phenotype through potassium current modulation cannot be excluded.


Assuntos
Canal de Potássio KCNQ1 , Síndrome do QT Longo , Animais , Cricetinae , Alelos , Bélgica , Cricetulus , Canal de Potássio KCNQ1/genética , Humanos , Síndrome de Jervell-Lange Nielsen/genética , Síndrome do QT Longo/genética
8.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36440912

RESUMO

MOTIVATION: Computational identification of copy number variants (CNVs) in sequencing data is a challenging task. Existing CNV-detection methods account for various sources of variation and perform different normalization strategies. However, their applicability and predictions are restricted to specific enrichment protocols. Here, we introduce a novel tool named varAmpliCNV, specifically designed for CNV-detection in amplicon-based targeted resequencing data (Haloplex™ enrichment protocol) in the absence of matched controls. VarAmpliCNV utilizes principal component analysis (PCA) and/or metric dimensional scaling (MDS) to control variances of amplicon associated read counts enabling effective detection of CNV signals. RESULTS: Performance of VarAmpliCNV was compared against three existing methods (ConVaDING, ONCOCNV and DECoN) on data of 167 samples run with an aortic aneurysm gene panel (n = 30), including 9 positive control samples. Additionally, we validated the performance on a large deafness gene panel (n = 145) run on 138 samples, containing 4 positive controls. VarAmpliCNV achieved higher sensitivity (100%) and specificity (99.78%) in comparison to competing methods. In addition, unsupervised clustering of CNV segments and visualization plots of amplicons spanning these regions are included as a downstream strategy to filter out false positives. AVAILABILITY AND IMPLEMENTATION: The tool is freely available through galaxy toolshed and at: https://hub.docker.com/r/cmgantwerpen/varamplicnv. Supplementary Data File S1: https://tinyurl.com/2yzswyhh; Supplementary Data File S2: https://tinyurl.com/ycyf2fb4. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Variações do Número de Cópias de DNA , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
9.
Stem Cell Res ; 65: 102956, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36356561

RESUMO

Loeys-Dietz syndrome (LDS) is an autosomal dominant connective tissue disorder presenting with a variety of cardiovascular, skeletal, craniofacial and cutaneous manifestations. Aortic rupture or dissection of a thoracic aortic aneurysm (TAA) is the most life-threatening complication. We generated a an iPSC line from peripheral mononuclear blood cells of a TAA-presenting Loeys-Dietz syndrome type V patient with a causal, heterozygous variant in the TGFB3 gene (MIM* 190230, NM_003239.4:c.787G > C, p.(Asp263His)). The iPSCs present with the typical iPSC morphology, express pluripotency markers, have a normal karyotype and possess tri-lineage differentiation capability.


Assuntos
Síndrome de Loeys-Dietz , Humanos , Síndrome de Loeys-Dietz/genética , Fator de Crescimento Transformador beta3
10.
Hum Mutat ; 43(12): 1824-1828, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35819173

RESUMO

Pathogenic variants in JAG1 are known to cause Alagille syndrome (ALGS), a disorder that primarily affects the liver, lung, kidney, and skeleton. Whereas cardiac symptoms are also frequently observed in ALGS, thoracic aortic aneurysms have only been reported sporadically in postmortem autopsies. We here report two families with segregating JAG1 variants that present with isolated aneurysmal disease, as well as the first histological evaluation of aortic aneurysm tissue of a JAG1 variant carrier. Our observations shed more light on the pathomechanisms behind aneurysm formation in JAG1 variant harboring individuals and underline the importance of cardiovascular imaging in the clinical follow-up of such individuals.


Assuntos
Síndrome de Alagille , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Síndrome de Alagille/genética , Coração , Proteínas de Ligação ao Cálcio
11.
J Heart Lung Transplant ; 41(9): 1218-1227, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35581137

RESUMO

BACKGROUND: The importance of genetic testing for cardiomyopathies has increased in the last decade. However, in heart transplant patients with former cardiomyopathy, genetic testing in retrospect is not routinely performed. We hypothesize that the yield of genetic testing in this population is considerable, and will have a major impact for both patients and relatives. METHODS: Patients that underwent heart transplantation (HTx) between 1995 and 2020 and were still in follow-up, were offered genetic testing if the primary etiology was non-ischemic cardiomyopathy. Next generation sequencing (NGS) of known cardiomyopathy genes was performed and variants were classified as variant of unknown significance (class 3), likely pathogenic (class 4) or pathogenic (class 5) variant. RESULTS: Of the 99 HTx patients in active follow-up, only 6 patients had a genetic diagnosis at the time of HTx. In this study, 31 selected patients with prior non-ischemic cardiomyopathy underwent genetic testing post HTx. 23/31 patients (74.2%) carried a variant that was classified as class 3 or higher. In 12/31 patients a class 4/5 variant (38.7%) was identified, and in 11/31 patients (35.5%) a class 3 variant. Class 5 Variants in TTN were the most prevalent (7/31), followed by class 5 variants in MYBPC3 (2/31). A positive family history was present in 21/31 (67.7%) and a second precipitating factor (e.g., alcohol abuse, pregnancy) was present in 17/31 patients (54.8%). Diagnostic yield of genetic testing was similar between patients with or without familial history and/or second hit. Through cascade screening 48 family members were screened for presence of a class 4/5 variant, of whom 19 (39.6%) were genotype positive, of whom 10 (52.6%) showed a cardiac phenotype. Appropriate follow-up was offered. CONCLUSIONS: Genetic testing for cardiomyopathy genes established a molecular diagnosis in 38.7% of patients post HTx. These results highlight the importance of genetic testing in this population as it is still often overlooked in patients that already underwent HTx in the past. Genetic testing is highly recommended, independent of family history or second precipitating factors, as it might identify relatives at risk.


Assuntos
Cardiomiopatias , Transplante de Coração , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Cardiomiopatias/cirurgia , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Fenótipo
12.
Genet Med ; 24(5): 1045-1053, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35058154

RESUMO

PURPOSE: In a large cohort of 373 pediatric patients with Marfan syndrome (MFS) with a severe cardiovascular phenotype, we explored the proportion of patients with MFS with a pathogenic FBN1 variant and analyzed whether the type/location of FBN1 variants was associated with specific clinical characteristics and response to treatment. Patients were recruited on the basis of the following criteria: aortic root z-score > 3, age 6 months to 25 years, no prior or planned surgery, and aortic root diameter < 5 cm. METHODS: Targeted resequencing and deletion/duplication testing of FBN1 and related genes were performed. RESULTS: We identified (likely) pathogenic FBN1 variants in 91% of patients. Ectopia lentis was more frequent in patients with dominant-negative (DN) variants (61%) than in those with haploinsufficient variants (27%). For DN FBN1 variants, the prevalence of ectopia lentis was highest in the N-terminal region (84%) and lowest in the C-terminal region (17%). The association with a more severe cardiovascular phenotype was not restricted to DN variants in the neonatal FBN1 region (exon 25-33) but was also seen in the variants in exons 26 to 49. No difference in the therapeutic response was detected between genotypes. CONCLUSION: Important novel genotype-phenotype associations involving both cardiovascular and extra-cardiovascular manifestations were identified, and existing ones were confirmed. These findings have implications for prognostic counseling of families with MFS.


Assuntos
Ectopia do Cristalino , Síndrome de Marfan , Variação Biológica da População , Criança , Ectopia do Cristalino/complicações , Ectopia do Cristalino/genética , Fibrilina-1/genética , Fibrilinas/genética , Genótipo , Humanos , Síndrome de Marfan/genética , Mutação , Fenótipo
13.
Adv Exp Med Biol ; 1348: 251-264, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34807423

RESUMO

Loeys-Dietz syndrome is an autosomal dominant aortic aneurysm syndrome characterized by multisystemic involvement. The most typical clinical triad includes hypertelorism, bifid uvula or cleft palate and aortic aneurysm with tortuosity. Natural history is significant for aortic dissection at smaller aortic diameter and arterial aneurysms throughout the arterial tree. The genetic cause is heterogeneous and includes mutations in genes encoding for components of the transforming growth factor beta (TGFß) signalling pathway: TGFBR1, TGFBR2, SMAD2, SMAD3, TGFB2 and TGFB3. Despite the loss of function nature of these mutations, the patient-derived aortic tissues show evidence of increased (rather than decreased) TGFß signalling. These insights offer new options for therapeutic interventions.


Assuntos
Dissecção Aórtica , Síndrome de Loeys-Dietz , Humanos , Síndrome de Loeys-Dietz/diagnóstico , Síndrome de Loeys-Dietz/genética , Mutação , Receptores de Fatores de Crescimento Transformadores beta/genética
14.
Eur J Med Genet ; 64(11): 104322, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34438094

RESUMO

Sudden cardiac death (SCD) is a common cause of death in young adults. In up to 80% of cases a genetic cause is suspected. Next-generation sequencing of candidate genes can reveal the cause of SCD, provide prognostic management, and facilitate pre-symptomatic testing and prevention in relatives. Here we present a proband who experienced SCD in his sleep for which molecular autopsy was performed. We performed a post-mortem genetic analysis of a 49-year-old male who died during sleep after competitive kayaking, using a Cardiomyopathy and Primary Arrhythmia next-generation sequencing panel, each containing 51 candidate genes. Autopsy was not performed. Genetic testing of the proband resulted in missense variants in KCNQ1 (c.1449C > A; p.(Asn483Lys)) and DSG2 (c.2979G > T; p.(Gln993His)), both absent from the gnomAD database. Familial segregation analysis showed de novo occurrence of the DSG2 variant and presence of the KCNQ1 variant in the proband's mother and daughter. KCNQ1 p.(Asn483Lys) was predicted to be pathogenic by MutationTaster. However, none of the KCNQ1 variant carrying family members showed long QTc on ECG or Holter. We further functionally analysed this variant using patch-clamp in a heterologous expression system (Chinese Hamster Ovary (CHO) cells) expressing the KCNQ1 mutant in combination with KCNE1 wild type protein and showed no significant changes in electrophysiological function of Kv7.1. Based on the above evidence, we concluded that the DSG2 p.(Gln993His) variant is the most likely cause of SCD in the presented case, and that there is insufficient evidence that the identified KCNQ1 p.(Asn483Lys) variant would confer risk for SCD in his mother and daughter. Fortunately, the DSG2 variant was not inherited by the proband's two children. This case report indicates the added value of molecular autopsy and the importance of subsequent functional study of variants to inform patients and family members about the risk of variants they might carry.


Assuntos
Arritmias Cardíacas/genética , Morte Súbita Cardíaca/etiologia , Desmogleína 2/genética , Mutação de Sentido Incorreto , Animais , Arritmias Cardíacas/patologia , Células CHO , Cricetinae , Cricetulus , Desmogleína 2/metabolismo , Frequência Cardíaca , Humanos , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Masculino , Pessoa de Meia-Idade
15.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281165

RESUMO

Thoracic aortic aneurysm and dissection (TAAD) is a major cause of cardiovascular morbidity and mortality. Loss-of-function variants in LOX, encoding the extracellular matrix crosslinking enzyme lysyl oxidase, have been reported to cause familial TAAD. Using a next-generation TAAD gene panel, we identified five additional probands carrying LOX variants, including two missense variants affecting highly conserved amino acids in the LOX catalytic domain and three truncating variants. Connective tissue manifestations are apparent in a substantial fraction of the variant carriers. Some LOX variant carriers presented with TAAD early in life, while others had normal aortic diameters at an advanced age. Finally, we identified the first patient with spontaneous coronary artery dissection carrying a LOX variant. In conclusion, our data demonstrate that loss-of-function LOX variants cause a spectrum of aortic and arterial aneurysmal disease, often combined with connective tissue findings.


Assuntos
Aneurisma da Aorta Torácica/genética , Proteína-Lisina 6-Oxidase/genética , Adulto , Dissecção Aórtica/genética , Dissecção Aórtica/fisiopatologia , Aorta/metabolismo , Aneurisma da Aorta Torácica/fisiopatologia , Artérias/metabolismo , Tecido Conjuntivo/metabolismo , Doenças do Tecido Conjuntivo/genética , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Proteína-Lisina 6-Oxidase/metabolismo
16.
JMIR Med Inform ; 9(7): e27980, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34255700

RESUMO

BACKGROUND: Participation in quality controls, also called external quality assessment (EQA) schemes, is required for the ISO15189 accreditation of the Medical Centers of Human Genetics. However, directives on the minimal frequency of participation in genetic quality control schemes are lacking or too heterogeneous, with a possible impact on health care quality. OBJECTIVE: The aim of this project is to develop Belgian guidelines on the frequency of participation in quality controls for genetic testing in the context of rare diseases. METHODS: A group of experts analyzed 90 EQA schemes offered by accredited providers and focused on analyses used for the diagnosis of rare diseases. On that basis, the experts developed practical recommendations about the minimal frequencies of participation of the Medical Centers of Human Genetics in quality controls and how to deal with poor performances and change management. These guidelines were submitted to the Belgian Accreditation Body and then reviewed and approved by the Belgian College of Human Genetics and Rare Diseases and by the National Institute for Health and Disability Insurance. RESULTS: The guidelines offer a decisional algorithm for the minimal frequency of participation in human genetics EQA schemes. This algorithm has been developed taking into account the scopes of the EQA schemes, the levels of experience, and the annual volumes of the Centers of Human Genetics in the performance of the tests considered. They include three key principles: (1) the recommended annual assessment of all genetic techniques and technological platforms, if possible through EQAs covering the technique, genotyping, and clinical interpretation; (2) the triennial assessment of the genotyping and interpretation of specific germline mutations and pharmacogenomics analyses; and (3) the documentation of actions undertaken in the case of poor performances and the participation to quality control the following year. The use of a Bayesian statistical model has been proposed to help the Centers of Human Genetics to determine the theoretical number of tests that should be annually performed to achieve a certain threshold of performance (eg, a maximal error rate of 1%). Besides, the guidelines insist on the role and responsibility of the national public health authorities in the follow-up of the quality of analyses performed by the Medical Centers of Human Genetics and in demonstrating the cost-effectiveness and rationalization of participation frequency in these quality controls. CONCLUSIONS: These guidelines have been developed based on the analysis of a large panel of EQA schemes and data collected from the Belgian Medical Centers of Human Genetics. They are applicable to other countries and will facilitate and improve the quality management and financing systems of the Medical Centers of Human Genetics.

17.
Am J Hum Genet ; 108(6): 1115-1125, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34010605

RESUMO

Importin 8, encoded by IPO8, is a ubiquitously expressed member of the importin-ß protein family that translocates cargo molecules such as proteins, RNAs, and ribonucleoprotein complexes into the nucleus in a RanGTP-dependent manner. Current knowledge of the cargoes of importin 8 is limited, but TGF-ß signaling components such as SMAD1-4 have been suggested to be among them. Here, we report that bi-allelic loss-of-function variants in IPO8 cause a syndromic form of thoracic aortic aneurysm (TAA) with clinical overlap with Loeys-Dietz and Shprintzen-Goldberg syndromes. Seven individuals from six unrelated families showed a consistent phenotype with early-onset TAA, motor developmental delay, connective tissue findings, and craniofacial dysmorphic features. A C57BL/6N Ipo8 knockout mouse model recapitulates TAA development from 8-12 weeks onward in both sexes but most prominently shows ascending aorta dilatation with a propensity for dissection in males. Compliance assays suggest augmented passive stiffness of the ascending aorta in male Ipo8-/- mice throughout life. Immunohistological investigation of mutant aortic walls reveals elastic fiber disorganization and fragmentation along with a signature of increased TGF-ß signaling, as evidenced by nuclear pSmad2 accumulation. RT-qPCR assays of the aortic wall in male Ipo8-/- mice demonstrate decreased Smad6/7 and increased Mmp2 and Ccn2 (Ctgf) expression, reinforcing a role for dysregulation of the TGF-ß signaling pathway in TAA development. Because importin 8 is the most downstream TGF-ß-related effector implicated in TAA pathogenesis so far, it offers opportunities for future mechanistic studies and represents a candidate drug target for TAA.


Assuntos
Aneurisma da Aorta Torácica/etiologia , Mutação com Perda de Função , Perda de Heterozigosidade , Fenótipo , beta Carioferinas/genética , Adulto , Animais , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linhagem , Transdução de Sinais , Síndrome , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem , beta Carioferinas/metabolismo
18.
Sci Rep ; 11(1): 764, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436942

RESUMO

Marfan syndrome and related disorders are a group of heritable connective tissue disorders and share many clinical features that involve cardiovascular, skeletal, craniofacial, ocular, and cutaneous abnormalities. The majority of affected individuals have aortopathies associated with early mortality and morbidity. Implementation of targeted gene panel next-generation sequencing in these individuals is a powerful tool to obtain a genetic diagnosis. Here, we report on clinical and genetic spectrum of 53 families from India with a total of 83 patients who had a clinical diagnosis suggestive of Marfan syndrome or related disorders. We obtained a molecular diagnosis in 45/53 (85%) index patients, in which 36/53 (68%) had rare variants in FBN1 (Marfan syndrome; 63 patients in total), seven (13.3%) in TGFBR1/TGFBR2 (Loeys-Dietz syndrome; nine patients in total) and two patients (3.7%) in SKI (Shprintzen-Goldberg syndrome). 21 of 41 rare variants (51.2%) were novel. We did not detect a disease-associated variant in 8 (15%) index patients, and none of them met the Ghent Marfan diagnostic criteria. We found the homozygous FBN1 variant p.(Arg954His) in a boy with typical features of Marfan syndrome. Our study is the first reporting on the spectrum of variants in FBN1, TGFBR1, TGFBR2, and SKI in Indian individuals.


Assuntos
Proteínas de Ligação a DNA/genética , Fibrilina-1/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Síndrome de Marfan/genética , Mutação , Proteínas Proto-Oncogênicas/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Humanos , Índia/epidemiologia , Lactente , Masculino , Síndrome de Marfan/epidemiologia , Síndrome de Marfan/patologia , Pessoa de Meia-Idade , Adulto Jovem
19.
Europace ; 23(6): 918-927, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33221854

RESUMO

AIMS: We identified the first Belgian SCN5A founder mutation, c.4813 + 3_4813 + 6dupGGGT. To describe the clinical spectrum and disease severity associated with this mutation, clinical data of 101 SCN5A founder mutation carriers and 46 non-mutation carrying family members from 25 Belgian families were collected. METHODS AND RESULTS: The SCN5A founder mutation was confirmed by haplotype analysis. The clinical history and electrocardiographic parameters of the mutation carriers and their family members were gathered and compared. A cardiac electrical abnormality was observed in the majority (82%) of the mutation carriers. Cardiac conduction defects, defined as PR or QRS prolongation on electrocardiogram (ECG), were most frequent, occurring in 65% of the mutation carriers. Brugada syndrome (BrS) was the second most prevalent phenotype identified in 52%, followed by atrial dysrythmia in 11%. Overall, 33% of tested mutation carriers had a normal sodium channel blocker test. Negative tests were more common in family members distantly related to the proband. Overall, 23% of the mutation carriers were symptomatic, with 8% displaying major adverse events. As many as 13% of the patients tested with a sodium blocker developed ventricular arrhythmia. One family member who did not carry the founder mutation was diagnosed with BrS. CONCLUSION: The high prevalence of symptoms and sensitivity to sodium channel blockers in our founder population highlights the adverse effect of the founder mutation on cardiac conduction. The large phenotypical heterogeneity, variable penetrance, and even non-segregation suggest that other genetic (and environmental) factors modify the disease expression, severity, and outcome in these families.


Assuntos
Síndrome de Brugada , Canal de Sódio Disparado por Voltagem NAV1.5 , Bélgica/epidemiologia , Eletrocardiografia , Humanos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA