Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Front Plant Sci ; 7: 209, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973663

RESUMO

Fructans are known to occur in 15% of flowering plants and their accumulation is often associated with stress responses. Typically, particular fructan types occur within particular plant families. The family of the Buxaceae, harboring Pachysandra terminalis, an accumulator of graminan- and levan-type fructans, also harbors boxtree (Buxus sempervirens), a cold and drought tolerant species. Surprisingly, boxtree leaves do not accumulate the expected graminan- and levan-type fructans, but small inulin fructo-oligosaccharides (FOS: 1-kestotriose and nystose) and raffinose family oligosaccharides (RFOs: raffinose and stachyose) instead. The seasonal variation in concentrations of glucose, fructose, sucrose, FOS and RFOs were followed. Raffinose and stachyose peaked during the winter months, while FOS peaked at a very narrow time-interval in spring, immediately preceded by a prominent sucrose accumulation. Sucrose may function as a reserve carbohydrate in winter and early spring leaves. The switch from RFO to fructan metabolism in spring strongly suggests that fructans and RFOs fulfill distinct roles in boxtree leaves. RFOs may play a key role in the cold acclimation of winter leaves while temporal fructan biosynthesis in spring might increase sink strength to sustain the formation of new shoots.

2.
Planta ; 240(3): 629-43, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25023629

RESUMO

MAIN CONCLUSION: The first 6-fructan exohydrolase (6-FEH) cDNA from Lolium perenne was cloned and characterized. Following defoliation, Lp6 - FEHa transcript level unexpectedly decreased together with an increase in total FEH activity. Lolium perenne is a major forage grass species that accumulates fructans, mainly composed of ß(2,6)-linked fructose units. Fructans are mobilized through strongly increased activities of fructan exohydrolases (FEHs), sustaining regrowth following defoliation. To understand the complex regulation of fructan breakdown in defoliated grassland species, the objective was to clone and characterize new FEH genes in L. perenne. To find FEH genes related to refoliation, a defoliated tiller base cDNA library was screened. Characterization of the recombinant protein was performed in Pichia pastoris. In this report, the cloning and enzymatic characterization of the first 6-FEH from L. perenne is described. Following defoliation, during fructan breakdown, Lp6-FEHa transcript level unexpectedly decreased in elongating leaf bases (ELB) and in mature leaf sheaths (tiller base) in parallel to increased total FEH activities. In comparison, transcript levels of genes coding for fructosyltransferases (FTs) involved in fructan biosynthesis also decreased after defoliation but much faster than FEH transcript levels. Since Lp6-FEHa was strongly inhibited by sucrose, mechanisms modulating FEH activities are discussed. It is proposed that differences in the regulation of FEH activity among forage grasses influence their tolerance to defoliation.


Assuntos
Glicosídeo Hidrolases/metabolismo , Lolium/enzimologia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Glicosídeo Hidrolases/genética , Lolium/genética , Dados de Sequência Molecular , Pichia , Proteínas de Plantas/genética , Proteínas Recombinantes/metabolismo , Sacarose/metabolismo
3.
J Plant Physiol ; 169(15): 1520-9, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22795678

RESUMO

Inulin is a fructose-based polymer that is isolated from chicory (Cichorium intybus L.) taproots. The degree of polymerization (DP) determines its application and hence the value of the crop. The DP is highly dependent on the field conditions and harvest time. Therefore, the present study was carried out with the objective to understand the regulation of inulin metabolism and the process that determines the chain length and inulin yield throughout the whole growing season. Metabolic aspects of inulin production and degradation in chicory were monitored in the field and under controlled conditions. The following characteristics were determined in taproots: concentrations of glucose, fructose and sucrose, the inulin mean polymer length (mDP), yield, gene expression and activity of enzymes involved in inulin metabolism. Inulin synthesis, catalyzed by sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99) (1-SST) and fructan:fructan 1-fructosyltransferase (EC 2.4.1.100) (1-FFT), started at the onset of taproot development. Inulin yield as a function of time followed a sigmoid curve reaching a maximum in November. Inulin reached a maximum mDP of about 15 in September, than gradually decreased. Based on the changes observed in the pattern of inulin accumulation, we defined three different phases in the growing season and analyzed product formation, enzyme activity and gene expression in these defined periods. The results were validated by performing experiments under controlled conditions in climate rooms. Our results show that the decrease in 1-SST that starts in June is not regulated by day length and temperature. From mid-September onwards, the mean degree of polymerization (mDP) decreased gradually although inulin yield still increased. The decrease in mDP combined with increased yield results from fructan exohydrolase activity, induced by low temperature, and the back transfer activity of 1-FFT. Overall, this study provides background information on how to improve inulin yield and quality in chicory.


Assuntos
Cichorium intybus/química , Cichorium intybus/metabolismo , Inulina/metabolismo , Bélgica , Frutose/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glucose/metabolismo , Países Baixos , Raízes de Plantas/química , Estações do Ano , Sacarose/metabolismo
4.
Plant J ; 70(2): 205-19, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22098191

RESUMO

Fructans play important roles as reserve carbohydrates and stress protectants in plants, and additionally serve as prebiotics with emerging antioxidant properties. Various fructan types are synthesized by an array of plant fructosyltransferases belonging to family 32 of the glycoside hydrolases (GH32), clustering together with GH68 in Clan-J. Here, the 3D structure of a plant fructosyltransferase from a native source, the Pachysandra terminalis 6-SST/6-SFT (Pt6-SST/6-SFT), is reported. In addition to its 1-SST (1-kestose-forming) and hydrolytic side activities, the enzyme uses sucrose to create graminan- and levan-type fructans, which are probably associated with cold tolerance in this species. Furthermore, a Pt6-SST/6-SFT complex with 6-kestose was generated, representing a genuine acceptor binding modus at the +1, +2 and +3 subsites in the active site. The enzyme shows a unique configuration in the vicinity of its active site, including a unique D/Q couple located at the +1 subsite that plays a dual role in donor and acceptor substrate binding. Furthermore, it shows a unique orientation of some hydrophobic residues, probably contributing to its specific functionality. A model is presented showing formation of a ß(2-6) fructosyl linkage on 6-kestose to create 6,6-nystose, a mechanism that differs from the creation of a ß(2-1) fructosyl linkage on sucrose to produce 1-kestose. The structures shed light on the evolution of plant fructosyltransferases from their vacuolar invertase ancestors, and contribute to further understanding of the complex structure-function relationships within plant GH32 members.


Assuntos
Frutanos/biossíntese , Hexosiltransferases/metabolismo , Pachysandra/enzimologia , Proteínas de Plantas/metabolismo , Trissacarídeos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Domínio Catalítico , Cristalografia por Raios X , Hexosiltransferases/química , Hexosiltransferases/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Pachysandra/genética , Pachysandra/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Trissacarídeos/química
5.
J Exp Bot ; 62(6): 1871-85, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21196473

RESUMO

The main storage compounds in Lolium perenne are fructans with prevailing ß(2-6) linkages. A cDNA library of L. perenne was screened using Poa secunda sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. A full-length Lp6-SFT clone was isolated as shown by heterologous expression in Pichia pastoris. High levels of Lp6-SFT transcription were found in the growth zone of elongating leaves and in mature leaf sheaths where fructans are synthesized. Upon fructan synthesis induction, Lp6-SFT transcription was high in mature leaf blades but with no concomitant accumulation of fructans. In vitro studies with the recombinant Lp6-SFT protein showed that both 1-kestotriose and 6G-kestotriose acted as fructosyl acceptors, producing 1- and 6-kestotetraose (bifurcose) and 6G,6-kestotetraose, respectively. Interestingly, bifurcose formation ceased and 6G,6-kestotetraose was formed instead, when recombinant fructan:fructan 6G-fructosyltransferase (6G-FFT) of L. perenne was introduced in the enzyme assay with sucrose and 1-kestotriose as substrates. The remarkable absence of bifurcose in L. perenne tissues might be explained by a higher affinity of 6G-FFT, as compared with 6-SFT, for 1-kestotriose, which is the first fructan formed. Surprisingly, recombinant 6-SFT from Hordeum vulgare, a plant devoid of fructans with internal glucosyl residues, also produced 6G,6-kestotetraose from sucrose and 6G-kestotriose. In the presence of recombinant L. perenne 6G-FFT, it produced 6G,6-kestotetraose from 1-kestotriose and sucrose, like L. perenne 6-SFT. Thus, we demonstrate that the two 6-SFTs have close catalytic properties and that the distinct fructans formed in L. perenne and H. vulgare can be explained by the presence of 6G-FFT activity in L. perenne and its absence in H. vulgare.


Assuntos
Frutanos/biossíntese , Hexosiltransferases/metabolismo , Lolium/enzimologia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Hexosiltransferases/genética , Hordeum/enzimologia , Lolium/genética , Lolium/crescimento & desenvolvimento , Dados de Sequência Molecular , Pichia/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas Recombinantes/metabolismo
6.
Plant Physiol ; 155(1): 603-14, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21037113

RESUMO

About 15% of flowering plants accumulate fructans. Inulin-type fructans with ß(2,1) fructosyl linkages typically accumulate in the core eudicot families (e.g. Asteraceae), while levan-type fructans with ß(2,6) linkages and branched, graminan-type fructans with mixed linkages predominate in monocot families. Here, we describe the unexpected finding that graminan- and levan-type fructans, as typically occurring in wheat (Triticum aestivum) and barley (Hordeum vulgare), also accumulate in Pachysandra terminalis, an evergreen, frost-hardy basal eudicot species. Part of the complex graminan- and levan-type fructans as accumulating in vivo can be produced in vitro by a sucrose:fructan 6-fructosyltransferase (6-SFT) enzyme with inherent sucrose:sucrose 1-fructosyltransferase (1-SST) and fructan 6-exohydrolase side activities. This enzyme produces a series of cereal-like graminan- and levan-type fructans from sucrose as a single substrate. The 6-SST/6-SFT enzyme was fully purified by classic column chromatography. In-gel trypsin digestion led to reverse transcription-polymerase chain reaction-based cDNA cloning. The functionality of the 6-SST/6-SFT cDNA was demonstrated after heterologous expression in Pichia pastoris. Both the recombinant and native enzymes showed rather similar substrate specificity characteristics, including peculiar temperature-dependent inherent 1-SST and fructan 6-exohydrolase side activities. The finding that cereal-type fructans accumulate in a basal eudicot species further confirms the polyphyletic origin of fructan biosynthesis in nature. Our data suggest that the fructan syndrome in P. terminalis can be considered as a recent evolutionary event. Putative connections between abiotic stress and fructans are discussed.


Assuntos
Adaptação Fisiológica , Congelamento , Frutanos/metabolismo , Hexosiltransferases/genética , Hexosiltransferases/isolamento & purificação , Pachysandra/enzimologia , Sequência de Aminoácidos , Cromatografia por Troca Iônica , Clonagem Molecular , DNA Complementar/genética , Eletroforese em Gel de Poliacrilamida , Evolução Molecular , Hexosiltransferases/química , Hexosiltransferases/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Dados de Sequência Molecular , Peso Molecular , Pachysandra/genética , Mapeamento de Peptídeos , Filogenia , Pichia/metabolismo , Alinhamento de Sequência
7.
J Exp Bot ; 60(13): 3687-96, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19726634

RESUMO

Invertases cleave sucrose in glucose and fructose, using water as an acceptor. Fructosyltransferases catalyse the transfer of a fructosyl residue between sucrose and/or fructan molecules. Plant fructosyltransferases (FTs) evolved from vacuolar invertases by small mutational changes, leading to differences in substrate specificity. The S-type of enzymes (invertases, sucrose:sucrose 1-fructosyltransferases or 1-SSTs, and sucrose:fructan 6-fructosyltransferases or 6-SFTs) prefer sucrose as the donor substrate while F-type enzymes (fructan:fructan 1-fructosyltransferases or 1-FFTs and fructan:fructan 6(G)-fructosyltransferases or 6(G)-FFTs) preferentially use fructan as the donor substrate. Recently, a functional Asp/Arg or Asp/Lys couple in the Hypervariable Loop (HVL) was suggested to be essential to keep Asp in a favourable orientation for binding sucrose as the donor substrate in S-type enzymes. However, the F-type enzyme 1-FFT of Triticum aestivum (Ta1-FFT) also contains the Asp/Arg couple in the HVL, although it prefers fructan as the donor substrate. In this paper, mutagenesis studies on Ta1-FFT are presented. In Ta1-SST, Tyr282 (the Asp281 homologue) seems to be essential in creating a tight H-bond Network (HBN) in which the Arg-residue of the Asp/Arg couple is held in a fixed position. This tight HBN is disrupted in Ta1-FFT, leading to a more flexible Arg-residue and a dysfunctional Asp/Arg couple. A single D281Y mutation in Ta1-FFT restored the tight HBN and introduced typical S-type characteristics. Conclusively, in wheat FTs Asp281 (and its homologues) is involved in donor substrate specificity.


Assuntos
Hexosiltransferases/química , Proteínas de Plantas/química , Triticum/enzimologia , Sequência de Aminoácidos , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Triticum/química , Triticum/genética
8.
FEBS J ; 276(20): 5788-98, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19765078

RESUMO

Plant family 32 glycoside hydrolase enzymes include hydrolases (cell wall invertases, fructan exohydrolases, vacuolar invertases) and fructosyltransferases. These enzymes are very similar at the molecular and structural levels but are functionally different. Understanding the basis of the functional diversity in this family is a challenging task. By combining structural and site-directed mutagenesis data, Asp239 in AtcwINV1 was identified as an amino acid critical for binding and stabilizing sucrose. Plant fructan exohydrolases lack such an Asp239 equivalent. Substitution of Asp239 led to the loss of invertase activity, while its introduction in fructan exohydrolases increased invertase activity. Some fructan exohydrolases are inhibited by sucrose. The difference between the inhibitor (fructan exohydrolase) and the substrate (invertase) binding configurations of sucrose can be explained by the different orientation of Trp82. Furthermore, the evolutionary hydrolase/transferase transition could be mimicked and the difference between S-type fructosyltransferases (sucrose as donor) and F-type fructosyltransferases (fructan as donor) could be unravelled.


Assuntos
Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Glicosídeo Hidrolases/genética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Sacarose/metabolismo , beta-Frutofuranosidase/química , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
9.
J Exp Bot ; 60(3): 727-40, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19129163

RESUMO

Glycoside hydrolases (GH) have been shown to play unique roles in various biological processes like the biosynthesis of glycans, cell wall metabolism, plant defence, signalling, and the mobilization of storage reserves. To date, GH are divided into more than 100 families based upon their overall structure. GH32 and GH68 are combined in clan GH-J, not only harbouring typical hydrolases but also non-Leloir type transferases (fructosyltransferases), involved in fructan biosynthesis. This review summarizes the recent structure-function research progress on plant GH32 enzymes, and highlights the similarities and differences compared with the microbial GH32 and GH68 enzymes. A profound analysis of ligand-bound structures and site-directed mutagenesis experiments identified key residues in substrate (or inhibitor) binding and recognition. In particular, sucrose can bind as inhibitor in Cichorium intybus 1-FEH IIa, whereas it binds as substrate in Bacillus subtilis levansucrase and Arabidopsis thaliana cell wall invertase (AtcwINV1). In plant GH32, a single residue, the equivalent of Asp239 in AtcwINV1, appears to be important for sucrose stabilization in the active site and essential in determining sucrose donor specificity.


Assuntos
Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Domínio Catalítico , Sequência Conservada , Especificidade por Substrato , Triptofano
10.
New Phytol ; 180(4): 822-31, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18721162

RESUMO

Vacuolar invertases (VIs) degrade sucrose to glucose and fructose. Additionally, the fructan plant wheat (Triticum aestivum) contains different fructosyltransferases (FTs), which have evolved from VIs by developing the capacity to bind sucrose or fructans as acceptor substrates. Modelling studies revealed a hydrogen bonding network in the conserved WMNDPNG motif of VIs, which is absent in FTs. In this study, the hydrogen bonding network of wheat VI was disrupted by site-directed mutagenesis in the 23WMNDPNG29 motif. While the single mutants (W23Y, N25S) showed a moderate increase in 1-kestose production, a synergistic effect was observed for the double mutant (W23Y+N25S), showing a 17-fold increase in transfructosylation capacity, and becoming a real sucrose:sucrose 1-fructosyltransferase. Vacuolar invertases are fully saturable enzymes, contrary to FTs. This is the first report on the development of a fully saturable FT with respect to 1-kestose formation. The superior kinetics (K(m) approximately 43 mM) make the enzyme useful for biotechnological applications. The results indicate that changes in the WMNDPNG motif are necessary to develop transfructosylating capability. The shift towards smaller and/or more hydrophilic residues in this motif might contribute to the formation of a specific acceptor site for binding of sugar, instead of water.


Assuntos
Frutanos/biossíntese , Hexosiltransferases/biossíntese , Triticum/enzimologia , beta-Frutofuranosidase/metabolismo , Sequência de Aminoácidos , Evolução Molecular , Frutanos/química , Frutanos/genética , Hexosiltransferases/química , Hidrogênio/metabolismo , Dados de Sequência Molecular , Mutação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Triticum/genética , Vacúolos/metabolismo , beta-Frutofuranosidase/genética
11.
New Phytol ; 178(3): 572-80, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18331426

RESUMO

The hydrolytic plant enzymes of family 32 of glycoside hydrolases (GH32), including acid cell wall type invertases (EC 3.2.1.26), fructan 1-exohydrolases (1-FEH; EC 3.2.1.153) and fructan 6-exohydrolases (6-FEH; EC 3.2.1.154), are very similar at the molecular and structural levels, but are clearly functionally different. The work presented here aims at understanding the evolution of enzyme specificity and functional diversity in this family by means of site-directed mutagenesis. It is demonstrated for the first time that invertase activity can be introduced in an S101L mutant of chicory (Cichorium intybus) 1-FEH IIa by influencing the orientation of Trp 82. At high sucrose and enzyme concentrations, a shift is proposed from a stable inhibitor configuration to an unstable substrate configuration. In the same way, invertase activity was introduced in Beta vulgaris 6-FEH by introducing an acidic amino acid in the vicinity of the acid-base catalyst (F233D mutant), creating a beta-fructofuranosidase type of enzyme with dual activity against sucrose and levan. As single amino acid substitutions can influence the donor substrate specificity of FEHs, it is predicted that plant invertases and FEHs may have diversified by introduction of a very limited number of mutations in the common ancestor.


Assuntos
Beta vulgaris/enzimologia , Cichorium intybus/enzimologia , Glicosídeo Hidrolases/genética , Sacarose/química , Sacarose/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Engenharia Genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
12.
Physiol Plant ; 133(2): 242-53, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18346083

RESUMO

A third fructan exohydrolase isoform (1-FEHw3) was purified from wheat stems by a combination of ammonium sulfate precipitation, ConA affinity and ion-exchange chromatography. Homogeneity of the preparation was indicated by the presence of a single band (70 kDa) after SDS-PAGE. The enzyme hydrolyzed mainly beta2-1 linkages in fructans and was inhibited by sucrose. A cDNA could be obtained after reverse transcriptase polymerase chain reaction (RT-PCR)-based strategies and screening of a cDNA library. Functionality tests of the cDNA performed after heterologous expression in the yeast Pichia pastoris showed that the encoded protein has essentially the same characteristics as the native enzyme. Homology with previously described 1-FEH isoforms from wheat was high (97% identity), and the enzyme showed minor differences to the previously published enzymes. The relative abundance of 1-FEH transcripts in different tissues was investigated by using quantitative RT-PCR.


Assuntos
Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/metabolismo , Triticum/enzimologia , Triticum/genética , Sequência de Aminoácidos , Cromatografia por Troca Iônica , Clonagem Molecular , DNA Complementar/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Hidrólise , Dados de Sequência Molecular , Filogenia , Pichia/enzimologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Sacarose/farmacologia
13.
J Mol Biol ; 377(2): 378-85, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18258263

RESUMO

In plants, cell-wall invertases fulfil important roles in carbohydrate partitioning, growth, development and crop yield. In this study, we report on different X-ray crystal structures of Arabidopsis thaliana cell-wall invertase 1 (AtcwINV1) mutants with sucrose. These structures reveal a detailed view of sucrose binding in the active site of the wild-type AtcwINV1. Compared to related enzyme-sucrose complexes, important differences in the orientation of the glucose subunit could be observed. The structure of the E203Q AtcwINV1 mutant showed a complete new binding modus, whereas the D23A, E203A and D239A structures most likely represent the productive binding modus. Together with a hydrophobic zone formed by the conserved W20, W47 and W82, the residues N22, D23, R148, E203, D149 and D239 are necessary to create the ideal sucrose-binding pocket. D239 can interact directly with the glucose moiety of sucrose, whereas K242 has an indirect role in substrate stabilization. Most probably, K242 keeps D239 in a favourable position upon substrate binding. Unravelling the exact position of sucrose in plant cell-wall invertases is a necessary step towards the rational design of superior invertases to further increase crop yield and biomass production.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Sacarose/química , Sacarose/metabolismo , beta-Frutofuranosidase/química , beta-Frutofuranosidase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cristalografia por Raios X , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/classificação , Glicosídeo Hidrolases/metabolismo , Modelos Moleculares , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato , Sacarose/farmacologia , beta-Frutofuranosidase/genética
14.
Plant Physiol ; 145(3): 616-25, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17873089

RESUMO

Plant cell wall invertases and fructan exohydrolases (FEHs) are very closely related enzymes at the molecular and structural level (family 32 of glycoside hydrolases), but they are functionally different and are believed to fulfill distinct roles in plants. Invertases preferentially hydrolyze the glucose (Glc)-fructose (Fru) linkage in sucrose (Suc), whereas plant FEHs have no invertase activity and only split terminal Fru-Fru linkages in fructans. Recently, the three-dimensional structures of Arabidopsis (Arabidopsis thaliana) cell wall Invertase1 (AtcwINV1) and chicory (Cichorium intybus) 1-FEH IIa were resolved. Until now, it remained unknown which amino acid residues determine whether Suc or fructan is used as a donor substrate in the hydrolysis reaction of the glycosidic bond. In this article, we present site-directed mutagenesis-based data on AtcwINV1 showing that the aspartate (Asp)-239 residue fulfills an important role in both binding and hydrolysis of Suc. Moreover, it was found that the presence of a hydrophobic zone at the rim of the active site is important for optimal and stable binding of Suc. Surprisingly, a D239A mutant acted as a 1-FEH, preferentially degrading 1-kestose, indicating that plant FEHs lacking invertase activity could have evolved from a cell wall invertase-type ancestor by a few mutational changes. In general, family 32 and 68 enzymes containing an Asp-239 functional homolog have Suc as a preferential substrate, whereas enzymes lacking this homolog use fructans as a donor substrate. The presence or absence of such an Asp-239 homolog is proposed as a reliable determinant to discriminate between real invertases and defective invertases/FEHs.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ácido Aspártico/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , beta-Frutofuranosidase/química , beta-Frutofuranosidase/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sítios de Ligação , Regulação da Expressão Gênica de Plantas , Glicosídeo Hidrolases/genética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Especificidade por Substrato , Sacarose/química , Trissacarídeos/química , Triptofano , beta-Frutofuranosidase/genética
15.
New Phytol ; 176(2): 317-324, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17888113

RESUMO

Recently, the three-dimensional structure of chicory (Cichorium intybus) fructan 1-exohydrolase (1-FEH IIa) in complex with its preferential substrate, 1-kestose, was determined. Unfortunately, no such data could be generated with high degree of polymerization (DP) inulin, despite several soaking and cocrystallization attempts. Here, site-directed mutagenesis data are presented, supporting the presence of an inulin-binding cleft between the N- and C-terminal domains of 1-FEH IIa. In general, enzymes that are unable to degrade high DP inulins contain an N-glycosylation site probably blocking the cleft. By contrast, inulin-degrading enzymes have an open cleft configuration. An 1-FEH IIa P294N mutant, introducing an N-glycosylation site near the cleft, showed highly decreased activity against higher DP inulin. The introduction of a glycosyl chain most probably blocks the cleft and prevents inulin binding and degradation. Besides cell wall invertases, fructan 6-exohydrolases (6-FEHs) also contain a glycosyl chain most probably blocking the cleft. Removal of this glycosyl chain by site-directed mutagenesis in Arabidopsis thaliana cell wall invertase 1 and Beta vulgaris 6-FEH resulted in a strong decrease of enzymatic activities of the mutant proteins. By analogy, glycosylation of 1-FEH IIa affected overall enzyme activity. These data strongly suggest that the presence or absence of a glycosyl chain in the cleft is important for the enzyme's stability and optimal conformation.


Assuntos
Cichorium intybus/enzimologia , Glicosídeo Hidrolases/metabolismo , Inulina/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Beta vulgaris/enzimologia , Sítios de Ligação , Parede Celular/enzimologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosilação , Inulina/química , Inulina/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Especificidade por Substrato , beta-Frutofuranosidase/química , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
16.
J Exp Bot ; 58(8): 1969-83, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17456505

RESUMO

Fructans, which are beta-(2,1) and/or beta-(2,6) linked polymers of fructose, are important storage carbohydrates in many plants. They are mobilized via fructan exohydrolases (FEHs). The cloning, mapping, and functional analysis of the first 1-FEH (EC 3.2.1.153) from Lolium perenne L. var. Bravo is described here. By screening a perennial ryegrass cDNA library, a 1-FEH cDNA named Lp1-FEHa was cloned. The Lp1-FEHa deduced protein has a low iso-electric point (5.22) and it groups together with plant FEHs and cell-wall type invertases. The deduced amino acid sequence shows 75% identity to wheat 1-FEH w2. The Lp1-FEHa gene was mapped at a distal position on the linkage group 3 (LG3). Functional characterization of the recombinant protein in Pichia pastoris demonstrated that it had high FEH activity towards 1-kestotriose, 1,1-kestotetraose, and inulin, but low activity against 6-kestotriose and levan. Like other fructan-plant FEHs, no hydrolase activity could be detected towards sucrose, convincingly demonstrating that the enzyme is not a classic invertase. The expression pattern analysis of Lp1-FEHa revealed transcript accumulation in leaf tissues accumulating fructans while transcript level was low in the photosynthetic tissues. The high expression level of this 1-FEH in conditions of active fructan synthesis, together with its low expression level when fructan contents are low, suggest that it might play a role as a beta-(2,1) trimming enzyme acting during fructan synthesis in concert with fructan synthesis enzymes.


Assuntos
Frutanos/biossíntese , Glicosídeo Hidrolases/fisiologia , Lolium/enzimologia , Proteínas de Plantas/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Transporte Biológico , Mapeamento Cromossômico , Clonagem Molecular , Frutanos/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Lolium/genética , Lolium/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/fisiologia , Alinhamento de Sequência
17.
New Phytol ; 174(1): 90-100, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17335500

RESUMO

* Invertases and fructan exohydrolases (FEHs) fulfil important physiological functions in plants. Sucrose is the typical substrate for invertases and bacterial levansucrases but not for plant FEHs, which are usually inhibited by sucrose. * Here we report on complexes between chicory (Cichorium intybus) 1-FEH IIa with the substrate 1-kestose and the inhibitors sucrose, fructose and 2,5 dideoxy-2,5-imino-D-mannitol. Comparisons with other family GH32 and 68 enzyme-substrate complexes revealed that sucrose can bind as a substrate (invertase/levansucrase) or as an inhibitor (1-FEH IIa). * Sucrose acts as inhibitor because the O2 of the glucose moiety forms an H-linkage with the acid-base catalyst E201, inhibiting catalysis. By contrast, the homologous O3 of the internal fructose in the substrate 1-kestose forms an intramolecular H-linkage and does not interfere with the catalytic process. Mutagenesis showed that W82 and S101 are important for binding sucrose as inhibitor. * The physiological implications of the essential differences in the active sites of FEHs and invertases/levansucrases are discussed. Sucrose-inhibited FEHs show a K(i) (inhibition constant) well below physiological sucrose concentrations and could be rapidly activated under carbon deprivation.


Assuntos
Cichorium intybus/enzimologia , Glicosídeo Hidrolases/química , Proteínas de Plantas/química , Trissacarídeos/química , Sítios de Ligação , Sequência de Carboidratos , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Conformação Proteica , Sacarose/farmacologia , Trissacarídeos/metabolismo
18.
Funct Plant Biol ; 34(11): 972-983, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32689425

RESUMO

Fructans, typically reserve carbohydrates, may also fulfil other more specific roles in plants. It has been convincingly demonstrated that fructan hydrolysis contributes to osmoregulation during flower opening in the monocot species Hemerocallis. We report that a massive breakdown of inulin-type fructans in the petals of Campanula rapunculoides L. (Campanulaceae), associated with flower opening, is accompanied by a strong increase in fructan 1-exohydrolase (1-FEH; EC 3.2.1.153) activity and a decrease in sucrose : sucrose 1-fructosyl transferase (1-SST; EC 2.4.1.99) activity. The data strongly suggest that the drastic change in the 1-FEH/1-SST activity ratio causes the degradation of inulin, contributing to the osmotic driving force involved in flower opening. All characterised plant FEHs are believed to be derived from tissues that store fructans as a reserve carbohydrate either temporarily (grasses and cereals) or over a longer term (dicot roots and tubers). Here, we focussed on a physiologically distinct tissue and used a reverse transcriptase-polymerase chain reaction based strategy to clone the 1-FEH cDNA from the Campanula petals. The translated cDNA sequence groups along with other dicot FEHs and heterologous expression revealed that the cDNA encodes a 1-FEH without invertase activity. 1-FEH expression analysis in petals correlates well with 1-FEH activity and inulin degradation patterns in vivo, suggesting that this enzyme fulfils an important role during flower opening.

19.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 12): 1555-63, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17139091

RESUMO

Cell-wall invertases play crucial roles during plant development. They hydrolyse sucrose into its fructose and glucose subunits by cleavage of the alpha1-beta2 glycosidic bond. Here, the structure of the Arabidopsis thaliana cell-wall invertase 1 (AtcwINV1; gene accession code At3g13790) is described at a resolution of 2.15 A. The structure comprises an N-terminal fivefold beta-propeller domain followed by a C-terminal domain formed by two beta-sheets. The active site is positioned in the fivefold beta-propeller domain, containing the nucleophile Asp23 and the acid/base catalyst Glu203 of the double-displacement enzymatic reaction. The function of the C-terminal domain remains unknown. Unlike in other GH 32 family enzyme structures known to date, in AtcwINV1 the cleft formed between both domains is blocked by Asn299-linked carbohydrates. A preliminary site-directed mutagenesis experiment (Asn299Asp) removed the glycosyl chain but did not alter the activity profile of the enzyme.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Parede Celular/enzimologia , beta-Frutofuranosidase/química , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Asparagina/química , Sítios de Ligação , Carboidratos , Glicosídeo Hidrolases/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Especificidade por Substrato , Difração de Raios X , beta-Frutofuranosidase/metabolismo
20.
Carbohydr Res ; 341(16): 2744-50, 2006 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-16997290

RESUMO

Lychnose (alpha-D-Gal-(1-->6)-alpha-D-Glc-(1-->2)-beta-D-Fru-(1-->1)-alpha-D-Gal) was isolated from Stellaria media, a representative member of the Caryophyllaceae plant family. Weak acid hydrolysis, enzymatic hydrolysis and complete NMR characterization were performed to confirm the identity of the tetrasaccharide. All (1)H and (13)C resonances were unambiguously assigned and the conformation of the sugars was determined using one and two dimensional NMR techniques. Anomeric characterizations in lychnose were confirmed from HMBC and NOESY spectra.


Assuntos
Oligossacarídeos/química , Stellaria/química , Configuração de Carboidratos , Sequência de Carboidratos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Caules de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA