Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Anim Sci Biotechnol ; 15(1): 88, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867260

RESUMO

BACKGROUND: Weaning stress reduces growth performance and health of young pigs due in part to an abrupt change in diets from highly digestible milk to fibrous plant-based feedstuffs. This study investigated whether dietary galactooligosaccharide (GOS), supplemented both pre- and post-weaning, could improve growth performance and intestinal health via alterations in the hindgut microbial community. METHODS: Using a 3 × 2 factorial design, during farrowing 288 piglets from 24 litters received either no creep feed (FC), creep without GOS (FG-) or creep with 5% GOS (FG+) followed by a phase 1 nursery diet without (NG-) or with 3.8% GOS (NG+). Pigs were sampled pre- (D22) and post-weaning (D31) to assess intestinal measures. RESULTS: Creep fed pigs grew 19% faster than controls (P < 0.01) prior to weaning, and by the end of the nursery phase (D58), pigs fed GOS pre-farrowing (FG+) were 1.85 kg heavier than controls (P < 0.05). Furthermore, pigs fed GOS in phase 1 of the nursery grew 34% faster (P < 0.04), with greater feed intake and efficiency. Cecal microbial communities clustered distinctly in pre- vs. post-weaned pigs, based on principal coordinate analysis (P < 0.01). No effects of GOS were detected pre-weaning, but gruel creep feeding increased Chao1 α-diversity and altered several genera in the cecal microbiota (P < 0.05). Post-weaning, GOS supplementation increased some genera such as Fusicatenibacter and Collinsella, whereas others decreased such as Campylobacter and Frisingicoccus (P < 0.05). Changes were accompanied by higher molar proportions of butyrate in the cecum of GOS-fed pigs (P < 0.05). CONCLUSIONS: Gruel creep feeding effectively improves suckling pig growth regardless of GOS treatment. When supplemented post-weaning, prebiotic GOS improves piglet growth performance associated with changes in hindgut microbial composition.

2.
STAR Protoc ; 5(2): 103057, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38762883

RESUMO

Here, we present our protocol to culture enteric glial cells from the submucosal and myenteric plexus of neonatal and juvenile pig colons. We describe steps for colon isolation, microdissection, and enzymatic and mechanical dissociation. We include procedures for passaging and analyzing cell yield, freeze/thaw efficiency, and purity. This protocol allows for the generation of primary cultures of enteric glial cells from single-cell suspensions of microdissected layers of the colon wall and can be used to culture enteric glia from human colon specimens. For complete details on the use and execution of this protocol, please refer to Ziegler et al.1.


Assuntos
Animais Recém-Nascidos , Técnicas de Cultura de Células , Colo , Plexo Mientérico , Neuroglia , Animais , Neuroglia/citologia , Suínos , Plexo Mientérico/citologia , Colo/citologia , Colo/inervação , Técnicas de Cultura de Células/métodos , Plexo Submucoso/citologia , Células Cultivadas
3.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G228-G246, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147796

RESUMO

Ischemic damage to the intestinal epithelial barrier, such as in necrotizing enterocolitis or small intestinal volvulus, is associated with higher mortality rates in younger patients. We have recently reported a powerful pig model to investigate these age-dependent outcomes in which mucosal barrier restitution is strikingly absent in neonates but can be rescued by direct application of homogenized mucosa from older, juvenile pigs by a yet-undefined mechanism. Within the mucosa, a postnatally developing network of enteric glial cells (EGCs) is gaining recognition as a key regulator of the mucosal barrier. Therefore, we hypothesized that the developing EGC network may play an important role in coordinating intestinal barrier repair in neonates. Neonatal and juvenile jejunal mucosa recovering from surgically induced intestinal ischemia was visualized by scanning electron microscopy and the transcriptomic phenotypes were assessed by bulk RNA sequencing. EGC network density and glial activity were examined by Gene Set Enrichment Analysis, three-dimensional (3-D) volume imaging, and Western blot and its function in regulating epithelial restitution was assessed ex vivo in Ussing chamber using the glia-specific inhibitor fluoroacetate (FA), and in vitro by coculture assay. Here we refine and elaborate our translational model, confirming a neonatal phenotype characterized by a complete lack of coordinated reparative signaling in the mucosal microenvironment. Furthermore, we report important evidence that the subepithelial EGC network changes significantly over the early postnatal period and demonstrate that the proximity of a specific functional population of EGC to wounded intestinal epithelium contributes to intestinal barrier restitution following ischemic injury.NEW & NOTEWORTHY This study refines a powerful translational pig model, defining an age-dependent relationship between enteric glia and the intestinal epithelium during intestinal ischemic injury and confirming an important role for enteric glial cell (EGC) activity in driving mucosal barrier restitution. This study suggests that targeting the enteric glial network could lead to novel interventions to improve recovery from intestinal injury in neonatal patients.


Assuntos
Intestino Delgado , Neuroglia , Humanos , Animais , Recém-Nascido , Suínos , Neuroglia/fisiologia , Intestinos , Mucosa Intestinal , Jejuno , Isquemia
4.
Neurosci Lett ; 814: 137416, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37572875

RESUMO

The tumor microenvironment corresponds to a complex mixture of bioactive products released by local and recruited cells whose normal functions have been "corrupted" by cues originating from the tumor, mostly to favor cancer growth, dissemination and resistance to therapies. While the immune and the mesenchymal cellular components of the tumor microenvironment in colon cancer have been under intense scrutiny over the last two decades, the influence of the resident neural cells of the gut on colon carcinogenesis has only very recently begun to draw attention. The vast majority of the resident neural cells of the gastrointestinal tract belong to the enteric nervous system and correspond to enteric neurons and enteric glial cells, both of which have been understudied in the context of colon cancer development and progression. In this review, we especially discuss available evidence on enteric glia impact on colon carcinogenesis. To highlight "corrupted" functioning in enteric glial cells of the tumor microenvironment and its repercussion on tumorigenesis, we first review the main regulatory effects of enteric glial cells on the intestinal epithelium in homeostatic conditions and we next present current knowledge on enteric glia influence on colon tumorigenesis. We particularly examine how enteric glial cell heterogeneity and plasticity require further appreciation to better understand the distinct regulatory interactions enteric glial cell subtypes engage with the various cell types of the tumor, and to identify novel biological targets to block enteric glia pro-carcinogenic signaling.


Assuntos
Neoplasias do Colo , Sistema Nervoso Entérico , Humanos , Neuroglia/metabolismo , Neurônios , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Carcinogênese , Microambiente Tumoral
7.
J Lipid Res ; 62: 100096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34280453

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes lysosomal degradation of the LDL receptor and is a key regulator of cholesterol metabolism. After the liver, the small intestine is the second organ that highly expresses PCSK9. However, the small intestine's ability to secrete PCSK9 remains a matter of debate. While liver-specific PCSK9-deficient mice present no PCSK9 in systemic blood, human intestinal Caco-2 cells can actively secrete PCSK9. This raises the possibility for active intestinal secretion via the portal blood. Here, we aimed to determine whether enterocytes can secrete PCSK9 using in vitro, ex vivo, and in vivo approaches. We first observed that PCSK9 secretion from Caco-2 cells was biphasic and dependent on Caco-2 maturation status. Transcriptional analysis suggested that this transient reduction in PCSK9 secretion might be due to loss of SREBP2-mediated transcription of PCSK9. Consistently, PCSK9 secretion was not detected ex vivo in human or mouse intestinal biopsies mounted in Ussing chambers. Finally, direct comparison of systemic versus portal blood PCSK9 concentrations in WT or liver-specific PCSK9-deficient mice confirmed the inability of the small intestine to secrete PCSK9 into the portal compartment. Altogether, our data demonstrate that mature enterocytes do not secrete PCSK9 and reinforce the central role of the liver in the regulation of the concentration of circulating PCSK9 and consequently of cellular LDL receptors.


Assuntos
Pró-Proteína Convertase 9/metabolismo , Animais , Células CACO-2 , Diferenciação Celular , Células Cultivadas , Humanos , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pró-Proteína Convertase 9/sangue , Pró-Proteína Convertase 9/deficiência
8.
EBioMedicine ; 49: 172-188, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31662289

RESUMO

BACKGROUND: Colon cancer stem cells (CSCs), considered responsible for tumor initiation and cancer relapse, are constantly exposed to regulatory cues emanating from neighboring cells present in the tumor microenvironment. Among these cells are enteric glial cells (EGCs) that are potent regulators of the epithelium functions in a healthy intestine. However, whether EGCs impact CSC-driven tumorigenesis remains unknown. METHODS: Impact of human EGC primary cultures or a non-transformed EGC line on CSCs isolated from human primary colon adenocarcinomas or colon cancer cell lines with different p53, MMR system and stemness status was determined using murine xenograft models and 3D co-culture systems. Supernatants of patient-matched human primary colon adenocarcinomas and non-adjacent healthy mucosa were used to mimic tumor versus healthy mucosa secretomes and compare their effects on EGCs. FINDINGS: Our data show that EGCs stimulate CSC expansion and ability to give rise to tumors via paracrine signaling. Importantly, only EGCs that were pre-activated by tumor epithelial cell-derived soluble factors increased CSC tumorigenicity. Pharmacological inhibition of PGE2 biosynthesis in EGCs or IL-1 knockdown in tumor epithelial cells prevented EGC acquisition of a pro-tumorigenic phenotype. Inhibition of PGE2 receptor EP4 and EGFR in CSCs inhibited the effects of tumor-activated EGCs. INTERPRETATION: Altogether, our results show that EGCs, once activated by the tumor, acquire a pro-tumorigenic phenotype and stimulate CSC-driven tumorigenesis via a PGE2/EP4/EGFR-dependent pathway. FUNDING: This work was supported by grants from the French National Cancer Institute, La Ligue contre le Cancer, the 'Région des Pays de la Loire' and the UNC Lineberger Comprehensive Cancer Center.


Assuntos
Carcinogênese/patologia , Neoplasias do Colo/patologia , Células-Tronco Neoplásicas/patologia , Neuroglia/patologia , Animais , Carcinogênese/metabolismo , Linhagem Celular , Dinoprostona/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Interleucina-1/metabolismo , Masculino , Camundongos SCID , Modelos Biológicos , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Transdução de Sinais , Microambiente Tumoral
9.
EMBO Rep ; 20(9): e48084, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31368207

RESUMO

The shape of the cell nucleus can vary considerably during developmental and pathological processes; however, the impact of nuclear morphology on cell behavior is not known. Here, we observed that the nuclear envelope flattens as cells transit from G1 to S phase and inhibition of myosin II prevents nuclear flattening and impedes progression to S phase. Strikingly, we show that applying compressive force on the nucleus in the absence of myosin II-mediated tension is sufficient to restore G1 to S transition. Using a combination of tools to manipulate nuclear morphology, we observed that nuclear flattening activates a subset of transcription factors, including TEAD and AP1, leading to transcriptional induction of target genes that promote G1 to S transition. In addition, we found that nuclear flattening mediates TEAD and AP1 activation in response to ROCK-generated contractility or cell spreading. Our results reveal that the nuclear envelope can operate as a mechanical sensor whose deformation controls cell growth in response to tension.


Assuntos
Núcleo Celular/metabolismo , Mecanotransdução Celular/fisiologia , Membrana Nuclear/metabolismo , Fatores de Transcrição/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Divisão Celular/genética , Divisão Celular/fisiologia , Linhagem Celular , Núcleo Celular/genética , Citometria de Fluxo , Fase G1/genética , Fase G1/fisiologia , Células HeLa , Humanos , Mecanotransdução Celular/genética , Microscopia de Força Atômica , Membrana Nuclear/genética , Plasmídeos/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fase S/genética , Fase S/fisiologia , Fatores de Transcrição/genética
11.
Genes Dev ; 32(15-16): 1020-1034, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068703

RESUMO

RNA-binding proteins (RBPs) are expressed broadly during both development and malignant transformation, yet their mechanistic roles in epithelial homeostasis or as drivers of tumor initiation and progression are incompletely understood. Here we describe a novel interplay between RBPs LIN28B and IMP1 in intestinal epithelial cells. Ribosome profiling and RNA sequencing identified IMP1 as a principle node for gene expression regulation downstream from LIN28B In vitro and in vivo data demonstrate that epithelial IMP1 loss increases expression of WNT target genes and enhances LIN28B-mediated intestinal tumorigenesis, which was reversed when we overexpressed IMP1 independently in vivo. Furthermore, IMP1 loss in wild-type or LIN28B-overexpressing mice enhances the regenerative response to irradiation. Together, our data provide new evidence for the opposing effects of the LIN28B-IMP1 axis on post-transcriptional regulation of canonical WNT signaling, with implications in intestinal homeostasis, regeneration and tumorigenesis.


Assuntos
Carcinogênese , Regulação da Expressão Gênica , Mucosa Intestinal/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regulon , Via de Sinalização Wnt , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Humanos , Mucosa Intestinal/fisiologia , Camundongos , Camundongos Transgênicos , Oncogenes , Biossíntese de Proteínas , Proteínas de Ligação a RNA/fisiologia , Regeneração , Células-Tronco/metabolismo
12.
PLoS One ; 13(8): e0200674, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30138372

RESUMO

Intestinal ischemic injury results sloughing of the mucosal epithelium leading to host sepsis and death unless the mucosal barrier is rapidly restored. Volvulus and neonatal necrotizing enterocolitis (NEC) in infants have been associated with intestinal ischemia, sepsis and high mortality rates. We have characterized intestinal ischemia/repair using a highly translatable porcine model in which juvenile (6-8-week-old) pigs completely and efficiently restore barrier function by way of rapid epithelial restitution and tight junction re-assembly. In contrast, separate studies showed that younger neonatal (2-week-old) pigs exhibited less robust recovery of barrier function, which may model an important cause of high mortality rates in human infants with ischemic intestinal disease. Therefore, we aimed to further refine our repair model and characterize defects in neonatal barrier repair. Here we examine the defect in neonatal mucosal repair that we hypothesize is associated with hypomaturity of the epithelial and subepithelial compartments. Following jejunal ischemia in neonatal and juvenile pigs, injured mucosa was stripped from seromuscular layers and recovered ex vivo while monitoring transepithelial electrical resistance (TEER) and 3H-mannitol flux as measures of barrier function. While ischemia-injured juvenile mucosa restored TEER above control levels, reduced flux over the recovery period and showed 93±4.7% wound closure, neonates exhibited no change in TEER, increased flux, and a 11±23.3% increase in epithelial wound size. Scanning electron microscopy revealed enterocytes at the wound margins of neonates failed to assume the restituting phenotype seen in restituting enterocytes of juveniles. To attempt rescue of injured neonatal mucosa, neonatal experiments were repeated with the addition of exogenous prostaglandins during ex vivo recovery, ex vivo recovery with full thickness intestine, in vivo recovery and direct application of injured mucosal homogenate from neonates or juveniles. Neither exogenous prostaglandins, intact seromuscular intestinal layers, nor in vivo recovery enhanced TEER or restitution in ischemia-injured neonatal mucosa. However, ex vivo exogenous application of injured juvenile mucosal homogenate produced a significant increase in TEER and enhanced histological restitution to 80±4.4% epithelial coverage in injured neonatal mucosa. Thus, neonatal mucosal repair can be rescued through direct contact with the cellular and non-cellular milieu of ischemia-injured mucosa from juvenile pigs. These findings support the hypothesis that a defect in mucosal repair in neonates is due to immature repair mechanisms within the mucosal compartment. Future studies to identify and rescue specific defects in neonatal intestinal repair mechanisms will drive development of novel clinical interventions to reduce mortality in infants affected by intestinal ischemic injury.


Assuntos
Epitélio/patologia , Enteropatias/fisiopatologia , Mucosa Intestinal/citologia , Isquemia/fisiopatologia , Jejuno/fisiologia , Doenças Vasculares/prevenção & controle , Animais , Animais Recém-Nascidos , Células Cultivadas , Epitélio/lesões , Mucosa Intestinal/fisiologia , Jejuno/lesões , Recuperação de Função Fisiológica , Suínos , Doenças Vasculares/patologia
13.
Brain Res ; 1693(Pt B): 140-145, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29425908

RESUMO

Glial cells of the enteric nervous system correspond to a unique glial lineage distinct from other central and peripheral glia, and form a vast and abundant network spreading throughout all the layers of the gastrointestinal wall. Research over the last two decades has demonstrated that enteric glia regulates all major gastrointestinal functions via multiple bi-directional crosstalk with enteric neurons and other neighboring cell types. Recent studies propose that enteric glia represents a heterogeneous population associated with distinct localization within the gut wall, phenotype and activity. Compelling evidence also indicates that enteric glial cells are capable of plasticity leading to phenotypic changes whose pinnacle so far has been shown to be the generation of enteric neurons. While alterations of the glial network have been heavily incriminated in the development of gastrointestinal pathologies, enteric glial cells have also recently emerged as an active player in gut-brain signaling. Therefore, the development of tools and techniques to better appraise enteric glia heterogeneity and plasticity will undoubtedly unveil critical regulatory mechanisms implicated in gut health and disease, as well as disorders of the gut-brain axis.


Assuntos
Sistema Nervoso Entérico/citologia , Neuroglia/fisiologia , Animais , Humanos , Rede Nervosa/citologia , Neuroglia/classificação
14.
Artigo em Inglês | MEDLINE | ID: mdl-29188232

RESUMO

BACKGROUND & AIMS: In several types of cancers, tumor cells invade adjacent tissues by migrating along the resident nerves of the tumor microenvironment. This process, called perineural invasion, typically occurs along extrinsic nerves, with Schwann cells providing physical guidance for the tumor cells. However, in the colorectal cancer microenvironment, the most abundant nervous structures belong to the nonmyelinated intrinsic enteric nervous system (ENS). In this study, we investigated whether colon cancer cells interact with the ENS. METHODS: Tumor epithelial cells (TECs) from human primary colon adenocarcinomas and cell lines were cocultured with primary cultures of ENS and cultures of human ENS plexus explants. By combining confocal and atomic force microscopy, as well as video microscopy, we assessed tumor cell adhesion and migration on the ENS. We identified the adhesion proteins involved using a proteomics approach based on biotin/streptavidin interaction, and their implication was confirmed further using selective blocking antibodies. RESULTS: TEC adhered preferentially and with stronger adhesion forces to enteric nervous structures than to mesenchymal cells. TEC adhesion to ENS involved direct interactions with enteric neurons. Enteric neuron removal from ENS cultures led to a significant decrease in tumor cell adhesion. TECs migrated significantly longer and further when adherent on ENS compared with on mesenchymal cells, and their trajectory faithfully followed ENS structures. Blocking N-cadherin and L1CAM decreased TEC migration along ENS structures. CONCLUSIONS: Our data show that the enteric neuronal network guides tumor cell migration, partly via L1CAM and N-cadherin. These results open a new avenue of research on the underlying mechanisms and consequences of perineural invasion in colorectal cancer.

15.
Aging (Albany NY) ; 9(8): 1898-1915, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28854151

RESUMO

Intestinal epithelial stem cells (IESCs) are critical to maintain intestinal epithelial function and homeostasis. We tested the hypothesis that aging promotes IESC dysfunction using old (18-22 months) and young (2-4 month) Sox9-EGFP IESC reporter mice. Different levels of Sox9-EGFP permit analyses of active IESC (Sox9-EGFPLow), activatable reserve IESC and enteroendocrine cells (Sox9-EGFPHigh), Sox9-EGFPSublow progenitors, and Sox9-EGFPNegative differentiated lineages. Crypt-villus morphology, cellular composition and apoptosis were measured by histology. IESC function was assessed by crypt culture, and proliferation by flow cytometry and histology. Main findings were confirmed in Lgr5-EGFP and Lgr5-LacZ mice. Aging-associated gene expression changes were analyzed by Fluidigm mRNA profiling. Crypts culture from old mice yielded fewer and less complex enteroids. Histology revealed increased villus height and Paneth cells per crypt in old mice. Old mice showed increased numbers and hyperproliferation of Sox9-EGFPLow IESC and Sox9-EGFPHigh cells. Cleaved caspase-3 staining demonstrated increased apoptotic cells in crypts and villi of old mice. Gene expression profiling revealed aging-associated changes in mRNAs associated with cell cycle, oxidative stress and apoptosis specifically in IESC. These findings provide new, direct evidence for aging associated IESC dysfunction, and define potential biomarkers and targets for translational studies to assess and maintain IESC function during aging.


Assuntos
Envelhecimento/patologia , Proliferação de Células , Células Epiteliais/patologia , Mucosa Intestinal/patologia , Jejuno/patologia , Células-Tronco/patologia , Fatores Etários , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Apoptose , Ciclo Celular , Linhagem da Célula , Enterócitos/metabolismo , Enterócitos/patologia , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Homeostase , Mucosa Intestinal/metabolismo , Jejuno/metabolismo , Óperon Lac , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estresse Oxidativo , Celulas de Paneth/metabolismo , Celulas de Paneth/patologia , Fenótipo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais , Esferoides Celulares , Células-Tronco/metabolismo , Fatores de Tempo , Técnicas de Cultura de Tecidos
16.
Am J Physiol Gastrointest Liver Physiol ; 311(2): G221-36, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27313176

RESUMO

Protease-activated receptors PAR1 and PAR2 play an important role in the control of epithelial cell proliferation and migration. However, the survival of normal and tumor intestinal stem/progenitor cells promoted by proinflammatory mediators may be critical in oncogenesis. The glycogen synthase kinase-3ß (GSK3ß) pathway is overactivated in colon cancer cells and promotes their survival and drug resistance. We thus aimed to determine PAR1 and PAR2 effects on normal and tumor intestinal stem/progenitor cells and whether they involved GSK3ß. First, PAR1 and PAR2 were identified in colon stem/progenitor cells by immunofluorescence. In three-dimensional cultures of murine crypt units or single tumor Caco-2 cells, PAR2 activation decreased numbers and size of normal or cancerous spheroids, and PAR2-deficient spheroids showed increased proliferation, indicating that PAR2 represses proliferation. PAR2-stimulated normal cells were more resistant to stress (serum starvation or spheroid passaging), suggesting prosurvival effects of PAR2 Accordingly, active caspase-3 was strongly increased in PAR2-deficient normal spheroids. PAR2 but not PAR1 triggered GSK3ß activation through serine-9 dephosphorylation in normal and tumor cells. The PAR2-triggered GSK3ß activation implicates an arrestin/PP2A/GSK3ß complex that is dependent on the Rho kinase activity. Loss of PAR2 was associated with high levels of GSK3ß nonactive form, strengthening the role of PAR2 in GSK3ß activation. GSK3 pharmacological inhibition impaired the survival of PAR2-stimulated spheroids and serum-starved cells. Altogether our data identify PAR2/GSK3ß as a novel pathway that plays a critical role in the regulation of stem/progenitor cell survival and proliferation in normal colon crypts and colon cancer.


Assuntos
Colo/enzimologia , Células Epiteliais/enzimologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Células-Tronco Neoplásicas/enzimologia , Receptor PAR-2/metabolismo , Células-Tronco/enzimologia , Animais , Arrestina/metabolismo , Células CACO-2 , Proliferação de Células , Sobrevivência Celular , Colo/patologia , Ativação Enzimática , Células Epiteliais/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/patologia , Fosforilação , Proteína Fosfatase 2/metabolismo , Interferência de RNA , Receptor PAR-2/genética , Transdução de Sinais , Esferoides Celulares , Nicho de Células-Tronco , Células-Tronco/patologia , Transfecção , Microambiente Tumoral , Quinases Associadas a rho/metabolismo
17.
Sci Rep ; 6: 25203, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27140063

RESUMO

In healthy gut enteric glial cells (EGC) are essential to intestinal epithelial barrier (IEB) functions. In Crohn's Disease (CD), both EGC phenotype and IEB functions are altered, but putative involvement of EGC in CD pathogenesis remains unknown and study of human EGC are lacking. EGC isolated from CD and control patients showed similar expression of glial markers and EGC-derived soluble factors (IL6, TGF-ß, proEGF, GSH) but CD EGC failed to increase IEB resistance and healing. Lipid profiling showed that CD EGC produced decreased amounts of 15-HETE, 18-HEPE, 15dPGJ2 and 11ßPGF2α as compared to healthy EGC. They also had reduced expression of the L-PGDS and AKR1C3 enzymes. Produced by healthy EGC, the 11ßPGF2 activated PPARγ receptor of intestinal epithelial cells to induce cell spreading and IEB wound repair. In addition to this novel healing mechanism our data show that CD EGC presented impaired ability to promote IEB functions through defect in L-PGDS-AKR1C3-11ßPGF2α dependent pathway.


Assuntos
Doença de Crohn/metabolismo , Dinoprosta/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Intestinos/citologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Células CACO-2 , Células Cultivadas , Técnicas de Cocultura , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Humanos , Mucosa Intestinal/metabolismo , Masculino , Pessoa de Meia-Idade , Prostaglandina D2/análogos & derivados , Prostaglandina D2/metabolismo , Cicatrização , Adulto Jovem
18.
Am J Physiol Gastrointest Liver Physiol ; 309(7): G578-89, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26251471

RESUMO

Current views suggest that apoptosis eliminates genetically damaged cells that may otherwise form tumors. Prior human studies link elevated insulin and reduced apoptosis to risk of colorectal adenomas. We hypothesized that hyperinsulinemia associated with obesity would lead to reduced colon epithelial cell (CEC) apoptosis after radiation and that this effect would be altered by deletion of the insulin-like growth factor (IGF) 1 receptor (IGF1R) or the insulin receptor (IR). Mice with villin-Cre-mediated IGF1R or IR deletion in CECs and floxed littermates were fed a high-fat diet to induce obesity and hyperinsulinemia or control low-fat chow. Mice were exposed to 5-Gy abdominal radiation to induce DNA damage and euthanized 4 h later for evaluation of apoptosis by localization of cleaved caspase-3. Obese mice exhibited decreased apoptosis of genetically damaged CECs. IGF1R deletion did not affect CEC apoptosis in lean or obese animals. In contrast, IR loss increased CEC apoptosis in both diet groups but did not prevent antiapoptotic effects of obesity. Levels of p53 protein were significantly reduced in CECs of obese mice with intact IR but increased in both lean and obese mice without IR. Levels of mRNAs encoding proapoptotic Perp and the cell cycle inhibitor Cdkn1b/p27 were reduced in CECs of obese mice and increased in lean mice lacking IR. Together, our studies provide novel evidence for antiapoptotic roles of obesity and IR, but not IGF1R, in colonic epithelium after DNA damage. However, neither IR nor IGF1R deletion prevented a reduction in radiation-induced CEC apoptosis during obesity and hyperinsulinemia.


Assuntos
Apoptose/efeitos da radiação , Colo/patologia , Mucosa Intestinal/metabolismo , Obesidade/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Animais , Western Blotting , Caspase 3 , Colo/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Lesões Experimentais por Radiação , Reação em Cadeia da Polimerase em Tempo Real , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética
19.
FASEB J ; 29(7): 2828-42, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25837582

RESUMO

Insulin-like growth factor 1 (IGF1) has potent trophic effects on normal or injured intestinal epithelium, but specific effects on intestinal stem cells (ISCs) are undefined. We used Sox9-enhanced green fluorescent protein (EGFP) reporter mice that permit analyses of both actively cycling ISCs (Sox9-EGFP(Low)) and reserve/facultative ISCs (Sox9-EGFP(High)) to study IGF1 action on ISCs in normal intestine or during crypt regeneration after high-dose radiation-induced injury. We hypothesized that IGF1 differentially regulates proliferation and gene expression in actively cycling and reserve/facultative ISCs. IGF1 was delivered for 5 days using subcutaneously implanted mini-pumps in uninjured mice or after 14 Gy abdominal radiation. ISC numbers, proliferation, and transcriptome were assessed. IGF1 increased epithelial growth in nonirradiated mice and enhanced crypt regeneration after radiation. In uninjured and regenerating intestines, IGF1 increased total numbers of Sox9-EGFP(Low) ISCs and percentage of these cells in M-phase. IGF1 increased percentages of Sox9-EGFP(High) ISCs in S-phase but did not expand this population. Microarray revealed that IGF1 activated distinct gene expression signatures in the 2 Sox9-EGFP ISC populations. In vitro IGF1 enhanced enteroid formation by Sox9-EGFP(High) facultative ISCs but not Sox9-EGFP(Low) actively cycling ISCs. Our data provide new evidence that IGF1 activates 2 ISC populations via distinct regulatory pathways to promote growth of normal intestinal epithelium and crypt regeneration after irradiation.


Assuntos
Células-Tronco Adultas/classificação , Fator de Crescimento Insulin-Like I/fisiologia , Intestino Delgado/citologia , Células-Tronco Adultas/efeitos dos fármacos , Células-Tronco Adultas/fisiologia , Animais , Ciclo Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/fisiologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/fisiologia , Camundongos , Camundongos Transgênicos , Células-Tronco Multipotentes/classificação , Células-Tronco Multipotentes/efeitos dos fármacos , Células-Tronco Multipotentes/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Lesões Experimentais por Radiação/tratamento farmacológico , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/fisiopatologia , Receptor IGF Tipo 1/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Regeneração/efeitos dos fármacos , Regeneração/fisiologia , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
20.
Gastroenterology ; 147(6): 1230-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25305504

RESUMO

Since their discovery at the end of the 19th century, enteric glial cells (EGCs), the major cellular component of the enteric nervous system, have long been considered mere supportive cells for neurons. However, recent evidence has challenged this view and highlighted their central role in the regulation of gut homeostasis as well as their implication in digestive and extradigestive diseases. In this review, we summarize emerging concepts as to how EGCs regulate neuromediator expression, exert neuroprotective roles, and even act as neuronal as well as glial progenitors in the enteric nervous system. A particularly crucial property of EGCs is their ability to maintain the integrity of the intestinal epithelial barrier, a role that may have important clinical implications not only for digestive diseases, such as postoperative ileus and inflammatory bowel diseases, but also for extradigestive diseases, such as Parkinson disease or obesity. EGCs could also contribute directly to disease processes (eg, inflammation) by their ability to secrete chemokines/cytokines in response to bacterial or inflammatory challenges. Defining the pleiotropic roles exerted by EGCs may reveal better knowledge and help develop new targeted therapeutic options for a variety of gastrointestinal diseases.


Assuntos
Sistema Nervoso Entérico/citologia , Enteropatias/patologia , Mucosa Intestinal/citologia , Neuroglia/citologia , Homeostase , Humanos , Mucosa Intestinal/inervação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA