Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 154: 8-17, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32634569

RESUMO

An acid-base neutralization technique has generated interest for the ability to achieve an enhanced dissolution of pH-dependent weakly basic or acidic poorly water-soluble drugs. However, the underlying nanonization mechanism, following acid-base neutralization, requires further elucidation. We hypothesized that the nanosuspensions (NSPs) via nanonization of drug particles could be attributed to the "salt-induced effect" and surfactant-driven micellization after acid-base neutralization. Rebamipide (RBM) and valsartan (VAL) were chosen as model drugs owing to poor water solubility and pH-dependent aqueous solubility. The drug NSP was rapidly obtained via salt formation (NaCl) after neutralization of the drug in basic NaOH solution and poloxamer 407 (POX 407) in acidic HCl solution. The NSP surrounded by NaCl salt was further stabilized by POX 407. The resulting NaCl salt modulated the critical micelle aggregation of POX 407, stabilizing the drug-loaded NSP in a cage of salt and micellar surfactant. In non-assisted homogenization, size analysis indicated the relationship between salt concentration and size reduction. Fourier transform infrared (FTIR) spectra revealed that the existence of hydrogen bonding between the drug and surfactant after neutralization, attributed to NSP size reduction. Changes in drug crystallinity to the nano-amorphous state were confirmed by powder X-ray diffraction (PXRD). Overall, the salt-induced drug NSP synergistically enhanced the dissolution rate, narrowing a gap between drug dissolution profiles in different pH environments.


Assuntos
Química Farmacêutica/métodos , Nanopartículas/química , Nanotecnologia/métodos , Poloxâmero/síntese química , Cloreto de Sódio/síntese química , Água/metabolismo , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Nanopartículas/metabolismo , Tamanho da Partícula , Poloxâmero/farmacocinética , Cloreto de Sódio/farmacocinética , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Suspensões/síntese química , Suspensões/farmacocinética , Difração de Raios X/métodos
2.
Int J Pharm ; 513(1-2): 148-152, 2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-27613254

RESUMO

This research study aimed to develop a new strategy for using a polymer blend in solid dispersion (SD) for dissolution enhancement of poorly water-soluble drugs. SDs with different blends of hydrophilic-hydrophobic polymers (zein/hydroxypropyl methylcellulose - zein/HPMC) were prepared using spray drying to modulate the drug crystal and polymer-drug interactions in SDs. Physicochemical characterizations, including power X-ray diffraction and Fourier transform infrared spectroscopy, were performed to elucidate the roles of the blends in SDs. Although hydrophobic polymers played a key role in changing the model drug from a crystal to an amorphous state, the dissolution rate was limited due to the wetting property. Fortunately, the hydrophilic-hydrophobic blend not only reduced the drug crystallinity but also resulted in a hydrogen bonding interaction between the drugs and the polymer for a dissolution rate improvement. This work may contribute to a new generation of solid dispersion using a blend of hydrophilic-hydrophobic polymers for an effective dissolution enhancement of poorly water-soluble drugs.


Assuntos
Portadores de Fármacos/química , Derivados da Hipromelose/química , Polímeros/química , Zeína/química , Química Farmacêutica/métodos , Cristalização , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Isradipino/administração & dosagem , Isradipino/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA