Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 295(32): 10956-10968, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32513871

RESUMO

CRISPR-Cas is an adaptive immune system that protects prokaryotes against foreign nucleic acids. Prokaryotes gain immunity by acquiring short pieces of the invading nucleic acid termed prespacers and inserting them into their CRISPR array. In type II-A systems, Cas1 and Cas2 proteins insert prespacers always at the leader-repeat junction of the CRISPR array. Among type II-A CRISPR systems, three distinct groups (G1, G2, and G3) exist according to the extent of DNA sequence conservation at the 3' end of the leader. However, the mechanisms by which these conserved motifs interact with their cognate Cas1 and Cas2 proteins remain unclear. Here, we performed in vitro integration assays, finding that for G1 and G2, the insertion site is recognized through defined mechanisms, at least in members examined to date, whereas G3 exhibits no sequence-specific insertion. G1 first recognized a 12-bp sequence at the leader-repeat junction and performed leader-side insertion before proceeding to spacer-side insertion. G2 recognized the full repeat sequence and could perform independent leader-side or spacer-side insertions, although the leader-side insertion was faster than spacer-side. The prespacer morphology requirements for Cas1-Cas2 varied, with G1 stringently requiring a 5-nucleotide 3' overhang and G2 being able to insert many forms of prespacers with variable efficiencies. These results highlight the intricacy of protein-DNA sequence interactions within the seemingly similar type II-A integration complexes and provide mechanistic insights into prespacer insertion. These interactions can be fine-tuned to expand the Cas1-Cas2 toolset for inserting small DNAs into diverse DNA targets.


Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Filogenia , Sequência de Bases , Proteínas Associadas a CRISPR/metabolismo , DNA/metabolismo , Ligação Proteica
2.
PeerJ ; 5: e3161, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28392985

RESUMO

The Clustered Regularly Interspaced Short Palindromic Repeats associated (CRISPR-Cas) systems consist of RNA-protein complexes that provide bacteria and archaea with sequence-specific immunity against bacteriophages, plasmids, and other mobile genetic elements. Bacteria and archaea become immune to phage or plasmid infections by inserting short pieces of the intruder DNA (spacer) site-specifically into the leader-repeat junction in a process called adaptation. Previous studies have shown that parts of the leader region, especially the 3' end of the leader, are indispensable for adaptation. However, a comprehensive analysis of leader ends remains absent. Here, we have analyzed the leader, repeat, and Cas proteins from 167 type II-A CRISPR loci. Our results indicate two distinct conserved DNA motifs at the 3' leader end: ATTTGAG (noted previously in the CRISPR1 locus of Streptococcus thermophilus DGCC7710) and a newly defined CTRCGAG, associated with the CRISPR3 locus of S. thermophilus DGCC7710. A third group with a very short CG DNA conservation at the 3' leader end is observed mostly in lactobacilli. Analysis of the repeats and Cas proteins revealed clustering of these CRISPR components that mirrors the leader motif clustering, in agreement with the coevolution of CRISPR-Cas components. Based on our analysis of the type II-A CRISPR loci, we implicate leader end sequences that could confer site-specificity for the adaptation-machinery in the different subsets of type II-A CRISPR loci.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA