Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
1.
J Microbiol Methods ; 227: 107053, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39395726

RESUMO

Mycobacterium tuberculosis complex (MTBC) whole genome sequencing (WGS) turnaround time and WGS success rates are highly influenced by DNA extraction protocols even from cultures. Efficient mycobacterial lysis is crucial for obtaining sufficient DNA from cultures to facilitate reliable genomic drug susceptibility prediction and accurate genotyping with WGS. We compared four DNA extraction protocols from BD BACTEC™ Mycobacterial Growth Indicator Tubes (MGIT) for WGS with a focus on the lysis step: protocol A) column-based protocol without mechanical lysis; protocol B) an adapted protocol including a bead beating step; protocol C) DNA extraction from primary received cultures using bead beating: and protocol D) DNA extraction from pre MGIT-positive (enriched) cultures. Protocol B increased DNA yield approximately 60-fold, and significantly improved the sequencing success rate. The increased yield also allowed DNA extraction from primary cultures with high success rates (protocol C). Additionally, by using pre-positive enriched MGIT cultures, we demonstrated that bead beating opens the possibility of reliable WGS up to five days before a MGIT tube would be flagged positive (protocol D). The most optimal bead beating-based DNA extraction was also evaluated for Nanopore sequencing. Shortening bead beating duration to 15 s resulted in longer read lengths (N50 from 1.4 kb to 2.6 kb) while still providing efficient lysis. Furthermore, AmpureXP bead beating-based DNA capture / purification proved to be as efficient as Qiagen column-based DNA extraction, further simplifying and shortening the DNA extraction protocol. Adding a mechanical lysis step to our routine MTBC DNA extraction protocol has allowed us to reduce the turnaround time while maintaining DNA quality sequencing success rates.

2.
Nat Microbiol ; 9(8): 2113-2127, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39090390

RESUMO

Several human-adapted Mycobacterium tuberculosis complex (Mtbc) lineages exhibit a restricted geographical distribution globally. These lineages are hypothesized to transmit more effectively among sympatric hosts, that is, those that share the same geographical area, though this is yet to be confirmed while controlling for exposure, social networks and disease risk after exposure. Using pathogen genomic and contact tracing data from 2,279 tuberculosis cases linked to 12,749 contacts from three low-incidence cities, we show that geographically restricted Mtbc lineages were less transmissible than lineages that have a widespread global distribution. Allopatric host-pathogen exposure, in which the restricted pathogen and host are from non-overlapping areas, had a 38% decrease in the odds of infection among contacts compared with sympatric exposures. We measure tenfold lower uptake of geographically restricted lineage 6 strains compared with widespread lineage 4 strains in allopatric macrophage infections. We conclude that Mtbc strain-human long-term coexistence has resulted in differential transmissibility of Mtbc lineages and that this differs by human population.


Assuntos
Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis , Simpatria , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/classificação , Tuberculose/transmissão , Tuberculose/microbiologia , Tuberculose/epidemiologia , Busca de Comunicante , Feminino , Adulto , Masculino , Macrófagos/microbiologia , Incidência , Filogenia
3.
Microb Genom ; 10(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39016539

RESUMO

Species belonging to the Mycobacterium kansasii complex (MKC) are frequently isolated from humans and the environment and can cause serious diseases. The most common MKC infections are caused by the species M. kansasii (sensu stricto), leading to tuberculosis-like disease. However, a broad spectrum of virulence, antimicrobial resistance and pathogenicity of these non-tuberculous mycobacteria (NTM) are observed across the MKC. Many genomic aspects of the MKC that relate to these broad phenotypes are not well elucidated. Here, we performed genomic analyses from a collection of 665 MKC strains, isolated from environmental, animal and human sources. We inferred the MKC pangenome, mobilome, resistome, virulome and defence systems and show that the MKC species harbours unique and shared genomic signatures. High frequency of presence of prophages and different types of defence systems were observed. We found that the M. kansasii species splits into four lineages, of which three are lowly represented and mainly in Brazil, while one lineage is dominant and globally spread. Moreover, we show that four sub-lineages of this most distributed M. kansasii lineage emerged during the twentieth century. Further analysis of the M. kansasii genomes revealed almost 300 regions of difference contributing to genomic diversity, as well as fixed mutations that may explain the M. kansasii's increased virulence and drug resistance.


Assuntos
Genoma Bacteriano , Genômica , Infecções por Mycobacterium não Tuberculosas , Mycobacterium kansasii , Filogenia , Mycobacterium kansasii/genética , Mycobacterium kansasii/classificação , Mycobacterium kansasii/isolamento & purificação , Humanos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Animais , Virulência/genética
4.
Euro Surveill ; 29(12)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516788

RESUMO

BackgroundThe EUSeqMyTB project, conducted in 2020, used whole genome sequencing (WGS) for surveillance of drug-resistant Mycobacterium tuberculosis in the European Union/European Economic Area (EU/EEA) and identified 56 internationally clustered multidrug-resistant (MDR) tuberculosis (TB) clones.AimWe aimed to define and establish a rapid and computationally simple screening method to identify probable members of the main cross-border MDR-TB clusters in WGS data to facilitate their identification and track their future spread.MethodsWe screened 34 of the larger cross-border clusters identified in the EuSeqMyTB pilot study (2017-19) for characteristic single nucleotide polymorphism (SNP) signatures that could identify and define members of each cluster. We also linked this analysis with published clusters identified in previous studies and identified more distant genetic relationships between some of the current clusters.ResultsA panel of 30 characteristic SNPs is presented that can be used as an initial (routine) screen for members of each cluster. For four of the clusters, no unique defining SNP could be identified; three of these are closely related (within approximately 20 SNPs) to one or more other clusters and likely represent a single established MDR-TB clade composed of multiple recent subclusters derived from the previously described ECDC0002 cluster.ConclusionThe identified SNP signatures can be integrated into routine pipelines and contribute to the more effective monitoring, rapid and widespread screening for TB. This SNP panel will also support accurate communication between laboratories about previously identified internationally transmitted MDR-TB genotypes.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Polimorfismo de Nucleotídeo Único , Projetos Piloto , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Sequenciamento Completo do Genoma/métodos , Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética
6.
J Microbiol Methods ; 197: 106482, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35551970

RESUMO

In the Netherlands, local laboratories are involved in the primary diagnosis of tuberculosis. Positive Mycobacterium tuberculosis complex cultures are sent to the National Institute for Public Health and the Environment (RIVM) for species identification, epidemiological typing, and screening for resistance by Whole Genome Sequencing (WGS). Occasional sample-swaps and cross-contaminations are known to occur in the diagnostic procedures. Such errors may lead to incorrect diagnoses resulting in the unnecessary or sub-optimal treatment of patients. Internal controls throughout the process ideally allow the early detection of such mistakes.


Assuntos
Mycobacterium tuberculosis , Tuberculose dos Linfonodos , DNA , Genoma Bacteriano , Humanos , Mycobacterium tuberculosis/genética , Sequenciamento Completo do Genoma/métodos
7.
Euro Surveill ; 27(12)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35332864

RESUMO

BackgroundNot all treated tuberculosis (TB) patients achieve long-term recovery and reactivation rates reflect effectiveness of TB treatment.AimWe aimed to estimate rates and risk factors of TB reactivation and reinfection in patients treated in the Netherlands, after completed or interrupted treatment.MethodsRetrospective cohort study of TB patients with available DNA fingerprint data, registered in the Netherlands Tuberculosis register (NTR) between 1993 and 2016. Reactivation was defined as an identical, and reinfection as a non-identical Mycobacterium tuberculosis strain in sequential episodes.ResultsReactivation rate was 55/100,000 person-years (py) for patients who completed, and 318/100,000 py for patients who interrupted treatment. The risk of reactivation was highest in the first 5 years after treatment in both groups. The incidence rate of reactivation was 228/100,000 py in the first 2 years and 57/100,000 py 2-5 years after completed treatment. The overall rate of reinfection was 16/100,000 py. Among those who completed treatment, patients with male sex, mono or poly rifampicin-resistant TB and a previous TB episode had significantly higher risk of reactivation. Extrapulmonary TB was associated with a lower risk. Among patients who interrupted treatment, directly observed treatment (DOT) and being an undocumented migrant or people experiencing homelessness were associated with a higher risk of reactivation.ConclusionsBoth patients who completed or interrupted TB treatment should be considered as risk groups for reactivation for at least 2-5 years after treatment. They patients should be monitored and guidelines should be in place to enhance early detection of recurrent TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Estudos de Coortes , Seguimentos , Humanos , Masculino , Mycobacterium tuberculosis/genética , Países Baixos/epidemiologia , Recidiva , Reinfecção , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Tuberculose/epidemiologia
8.
Open Forum Infect Dis ; 9(4): ofac077, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35308482

RESUMO

Background: Mycobacterium marinum is a nontuberculous mycobacterium that causes skin and soft tissue infections. Treatment consists of multiple antibiotics, sometimes combined with surgical debridement. There is little evidence for the choice of antibiotics, the duration of treatment, and the role of susceptibility testing. Methods: We performed a retrospective cohort study of culture-confirmed M. marinum infections in the Netherlands in the 2011-2018 period. Clinical characteristics, in vitro susceptibility, extent of disease, treatment regimens, and outcomes were analyzed. Incidence was assessed from laboratory databases. Results: Forty cases of M. marinum infection could be studied. Antibiotic treatment cured 36/40 patients (90%) after a mean treatment duration of 25 weeks. Failure/relapse occurred in 3 patients, and 1 patient was lost to follow-up. Antibiotic treatment consisted of monotherapy in 35% and 2-drug therapy in 63%. Final treatment contained mostly ethambutol-macrolide combinations (35%). Eleven patients (28%) received additional surgery. We recorded high rates of in vitro resistance to tetracyclines (36% of isolates). Tetracycline resistance seemed correlated with poor response to tetracycline monotherapy. The annual incidence rate was 0.15/100 000/year during the study period. Conclusions: Prolonged and susceptibility-guided treatment results in a 90% cure rate in M. marinum disease. Two-drug regimens of ethambutol and a macrolide are effective for moderately severe infections. Tetracycline monotherapy in limited disease should be used vigilantly, preferably with proven in vitro susceptibility.

9.
Antimicrob Agents Chemother ; 66(2): e0182921, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34807758

RESUMO

Moxifloxacin is an attractive drug for the treatment of isoniazid-resistant rifampicin-susceptible tuberculosis (TB) or drug-susceptible TB complicated by isoniazid intolerance. However, co-administration with rifampicin decreases moxifloxacin exposure. It remains unclear whether this drug-drug interaction has clinical implications. This retrospective study in a Dutch TB center investigated how rifampicin affected moxifloxacin exposure in patients with isoniazid-resistant or -intolerant TB. Moxifloxacin exposures were measured between 2015 and 2020 in 31 patients with isoniazid-resistant or -intolerant TB receiving rifampicin, and 20 TB patients receiving moxifloxacin without rifampicin. Moxifloxacin exposure, i.e., area under the concentration-time curve (AUC0-24h), and attainment of AUC0-24h/MIC > 100 were investigated for 400 mg moxifloxacin and 600 mg rifampicin, and increased doses of moxifloxacin (600 mg) or rifampicin (900 mg). Moxifloxacin AUC0-24h and peak concentration with a 400 mg dose were decreased when rifampicin was co-administered compared to moxifloxacin alone (ratio of geometric means 0.61 (90% CI (0.53, 0.70) and 0.81 (90% CI (0.70, 0.94), respectively). Among patients receiving rifampicin, 65% attained an AUC0-24h/MIC > 100 for moxifloxacin compared to 78% of patients receiving moxifloxacin alone; this difference was not significant. Seven out of eight patients receiving an increased dose of 600 mg moxifloxacin reached the target AUC0-24h/MIC > 100. This study showed a clinically significant 39% decrease in moxifloxacin exposure when rifampicin was co-administered. Moxifloxacin dose adjustment may compensate for this drug-drug interaction. Further exploring the impact of higher doses of these drugs in patients with isoniazid resistance or intolerance is paramount.


Assuntos
Rifampina , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/uso terapêutico , Humanos , Isoniazida/uso terapêutico , Moxifloxacina/uso terapêutico , Estudos Retrospectivos , Rifampina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
10.
J Travel Med ; 28(4)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33822988

RESUMO

BACKGROUND: Growing international migration has increased the complexity of tuberculosis transmission patterns. Italy's decision to close its borders in 2018 made of Spain the new European porte entrée for migration from the Horn of Africa (HA). In one of the first rescues of migrants from this region at the end of 2018, tuberculosis was diagnosed in eight subjects, mainly unaccompanied minors. METHODS: Mycobacterium tuberculosis isolates from these recently arrived migrants were analysed by Mycobacterial Interspersed Repetitive-Unit/Variable-Number of Tandem Repeat (MIRU-VNTR) and subsequent whole genome sequencing (WGS) analysis. Data were compared with those from collections from other European countries receiving migrants from the HA and a strain-specific PCR was applied for a fast searching of common strains. Infections in a cellular model were performed to assess strain virulence. RESULTS: MIRU-VNTR analysis allowed identifying an epidemiological cluster involving three of the eight cases from Somalia (0 single-nucleotide polymorphisms between isolates, HA cluster). Following detailed interviews revealed that two of these cases had shared the same migratory route in most of the trip and had spent a long time at a detention camp in Libya. To confirm potential en route transmission for the three cases, we searched the same strain in collections from other European countries receiving migrants from the HA. MIRU-VNTR, WGS and a strain-specific PCR for the HA strain were applied. The same strain was identified in 12 cases from Eritrea diagnosed soon after their arrival in 2018 to the Netherlands, Belgium and Italy. Intracellular replication rate of the strain did not reveal abnormal virulence. CONCLUSIONS: Our study suggests a potential en route transmission of a pan-susceptible strain, which caused at least 15 tuberculosis cases in Somalian and Eritrean migrants diagnosed in four different European countries.


Assuntos
Mycobacterium tuberculosis , Tuberculose , África , Análise por Conglomerados , Europa (Continente) , Genótipo , Humanos , Mycobacterium tuberculosis/genética , Tuberculose/epidemiologia
11.
Open Res Eur ; 1: 100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37645186

RESUMO

Background:  The bacteria that compose the Mycobacterium tuberculosis complex (MTBC) cause tuberculosis (TB) in humans and in different animals, including livestock. Much progress has been made in understanding the population structure of the human-adapted members of the MTBC by combining phylogenetics with genomics. Accompanying the discovery of new genetic diversity, a body of operational nomenclature has evolved to assist comparative and molecular epidemiological studies of human TB. By contrast, for the livestock-associated MTBC members, Mycobacterium bovis, M. caprae and M. orygis, there has been a lack of comprehensive nomenclature to accommodate new genetic diversity uncovered by emerging phylogenomic studies. We propose to fill this gap by putting forward a new nomenclature covering the main phylogenetic groups within M. bovis, M. caprae and M. orygis. Methods:  We gathered a total of 8,736 whole-genome sequences (WGS) from public sources and 39 newly sequenced strains, and selected a subset of 829 WGS, representative of the worldwide diversity of M. bovis, M. caprae and M. orygis. We used phylogenetics and genetic diversity patterns inferred from WGS to define groups. Results:  We propose to divide M. bovis, M. caprae and M. orygis in three main phylogenetic lineages, which we named La1, La2 and La3, respectively. Within La1, we identified several monophyletic groups, which we propose to classify into eight sublineages (La1.1-La1.8). These sublineages differed in geographic distribution, with some being geographically restricted and others globally widespread, suggesting different expansion abilities. To ease molecular characterization of these MTBC groups by the community, we provide phylogenetically informed, single nucleotide polymorphisms that can be used as barcodes for genotyping. These markers were implemented in KvarQ and TB-Profiler, which are platform-independent, open-source tools. Conclusions:  Our results contribute to an improved classification of the genetic diversity within the livestock-associated MTBC, which will benefit future molecular epidemiological and evolutionary studies.

12.
Eur Respir J ; 57(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32732329

RESUMO

Whole genome sequencing (WGS) can be used for molecular typing and characterisation of Mycobacterium tuberculosis complex (MTBC) strains. We evaluated the systematic use of a WGS-based approach for MTBC surveillance involving all European Union/European Economic Area (EU/EEA) countries and highlight the challenges and lessons learnt to be considered for the future development of a WGS-based surveillance system.WGS and epidemiological data of patients with rifampicin-resistant (RR) and multidrug-resistant (MDR) tuberculosis (TB) were collected from EU/EEA countries between January 2017 and December 2019. WGS-based genetic relatedness analysis was performed using a standardised approach including both core genome multilocus sequence typing (cgMLST) and single nucleotide polymorphism (SNP)-based calculation of distances on all WGS data that fulfilled minimum quality criteria to ensure data comparability.A total of 2218 RR/MDR-MTBC isolates were collected from 25 countries. Among these, 56 cross-border clusters with increased likelihood of recent transmission (≤5 SNPs distance) comprising 316 RR/MDR-MTBC isolates were identified. The cross-border clusters included between two and 30 resistant isolates from two to six countries, demonstrating different RR/MDR-TB transmission patterns in Western and Eastern EU countries.This pilot study shows that a WGS-based surveillance system is not only feasible but can efficiently elucidate the dynamics of in-country and cross-border RR/MDR-TB transmission across EU/EEA countries. Lessons learnt from this study highlight that the establishment of an EU/EEA centralised WGS-based surveillance system for TB will require strengthening of national integrated systems performing prospective WGS surveillance and the development of clear procedures to facilitate international collaboration for the investigation of cross-border clusters.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Europa (Continente) , Genoma Bacteriano , Humanos , Mycobacterium tuberculosis/genética , Projetos Piloto , Estudos Prospectivos , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Sequenciamento Completo do Genoma
15.
Front Immunol ; 11: 930, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508826

RESUMO

The global control of Tuberculosis remains elusive, and Bacillus Calmette-Guérin (BCG) -the most widely used vaccine in history-has proven insufficient for reversing this epidemic. Several authors have suggested that the mass presence of vaccinated hosts might have affected the Mycobacterium tuberculosis (MTB) population structure, and this could in turn be reflected in a prevalence of strains with higher ability to circumvent BCG-induced immunity, such as the recent Beijing genotype. The effect of vaccination on vaccine-escape variants has been well-documented in several bacterial pathogens; however the effect of the interaction between MTB strains and vaccinated hosts has never been previously described. In this study we show for the first time the interaction between MTB Beijing-genotype strains and BCG-vaccinated hosts. Using a well-controlled murine model of progressive pulmonary tuberculosis, we vaccinated BALB/c mice with two different sub-strains of BCG (BCG-Phipps and BCG-Vietnam). Following vaccination, the mice were infected with either one of three selected MTB strains. Strains were selected based on lineage, and included two Beijing-family clinical isolates (strains 46 and 48) and a well-characterized laboratory strain (H37Rv). Two months after infection, mice were euthanized and the bacteria extracted from their lungs. We characterized the genomic composite of the bacteria before and after exposure to vaccinated hosts, and also characterized the local response to the bacteria by sequencing the lung transcriptome in animals during the infection. Results from this study show that the interaction within the lungs of the vaccinated hosts results in the selection of higher-virulence bacteria, specifically for the Beijing genotype strains 46 and 48. After exposure to the BCG-induced immune response, strains 46 and 48 acquire genomic mutations associated with several virulence factors. As a result, the bacteria collected from these vaccinated hosts have an increased ability for immune evasion, as shown in both the host transcriptome and the histopathology studies, and replicates far more efficiently compared to bacteria collected from unvaccinated hosts or to the original-stock strain. Further research is warranted to ascertain the pathways associated with the genomic alterations. However, our results highlight novel host-pathogen interactions induced by exposure of MTB to BCG vaccinated hosts.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Pulmão/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Vacinação , Animais , Vacina BCG/imunologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Genoma Bacteriano , Genótipo , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Mycobacterium tuberculosis/patogenicidade , Virulência
16.
PLoS Negl Trop Dis ; 14(6): e0008069, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32498074

RESUMO

Africa is the second most populous continent and has perennial health challenges. Of the estimated 181 million school aged children in sub-Saharan Africa (SSA), nearly half suffer from ascariasis, trichuriasis, or a combination of these infections. Coupled with these is the problem of tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) infection, which is a leading cause of death in the region. Compared to the effect of the human immunodeficiency virus on the development of TB, the effect of chronic helminth infections is a neglected area of research, yet helminth infections are as ubiquitous as they are varied and may potentially have profound effects upon host immunity, particularly as it relates to TB infection, diagnosis, and vaccination. Protection against active TB is known to require a clearly delineated T-helper type 1 (Th1) response, while helminths induce a strong opposing Th2 and immune-regulatory host response. This Review highlights the potential challenges of helminth-TB co-infection in Africa and the need for further research.


Assuntos
Ascaríase/epidemiologia , Coinfecção/epidemiologia , Tricuríase/epidemiologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/complicações , Tuberculose/epidemiologia , Adolescente , África/epidemiologia , Ascaríase/complicações , Ascaríase/imunologia , Criança , Pré-Escolar , Coinfecção/imunologia , Coinfecção/prevenção & controle , Feminino , Humanos , Lactente , Masculino , Prevalência , Células Th1/imunologia , Células Th2/imunologia , Tricuríase/complicações , Tricuríase/imunologia , Tuberculose/imunologia , Tuberculose/prevenção & controle , Vacinas contra a Tuberculose/administração & dosagem
17.
PLoS One ; 15(4): e0224908, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32330146

RESUMO

Beijing strains of Mycobacterium tuberculosis (lineage 2) have been associated with drug-resistance and transmission of tuberculosis worldwide. Most of the Beijing strains identified in the Colombian Pacific coast have exhibited a multidrug resistant (MDR) phenotype. We sought to evaluate the clonality and sublineage of Beijing strains circulating in Southwestern Colombia. Thirty-seven Beijing strains were identified through spoligotyping out of 311 clinical isolates collected in 9 years from 2002-2010. Further analysis by MIRU-VNTR 24 loci was conducted for the Beijing strains. For sublineage classification, deletions of RD105, RD207, and RD131 and point mutations at fbpB, mutT2, and acs were evaluated. Drug-resistance associated mutations to first- and second-line anti-TB drugs were also evaluated. Additionally, two Beijing strains were Illumina-whole genome sequenced (one MDR and one drug-susceptible). Among the 37 Beijing strains characterized, 36 belonged to the SIT190 type from which 28 were MDR, four pre-extensively drug resistant (XDR) TB, and four XDR-TB. The remaining strain was SIT1 and drug susceptible. MIRU-VNTR analysis allowed the identification of three Beijing clusters and two unique strains. Beijing strains were confirmed as "modern" sublineage. The mutations rpoB S531L and katG S315T were the most common among MDR strains. Moreover, the two strains evaluated by whole genome sequencing (WGS) shared most of the genetic features with the sublineage 2.2.1 "modern" Beijing previously characterized from Asian strains. WGS analysis of the MDR strain revealed the presence of eight SNPs previously reported in other MDR "Beijing-like" strains from Colombia. The presence of "modern" Beijing strains in Southwestern Colombia, most of them with MDR phenotype, suggests a different origin of this M. tuberculosis sublineage compared to other Beijing strains found in neighboring South American countries. This work may serve as a genetic baseline to study the evolution and spread of M. tuberculosis Beijing strains in Colombia, which play an important role in the propagation of MDR-TB.


Assuntos
Farmacorresistência Bacteriana Múltipla , Mutação , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Adolescente , Adulto , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Pequim/epidemiologia , Criança , Pré-Escolar , Colômbia/epidemiologia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/efeitos dos fármacos , Filogenia , Mutação Puntual , Deleção de Sequência , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Adulto Jovem
18.
PLoS Comput Biol ; 16(3): e1007687, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32218567

RESUMO

Tuberculosis (TB) remains a public health threat in low TB incidence countries, through a combination of reactivated disease and onward transmission. Using surveillance data from the United Kingdom (UK) and the Netherlands (NL), we demonstrate a simple and predictable relationship between the probability of observing a cluster and its size (the number of cases with a single genotype). We demonstrate that the full range of observed cluster sizes can be described using a modified branching process model with the individual reproduction number following a Poisson lognormal distribution. We estimate that, on average, between 2010 and 2015, a TB case generated 0.41 (95% CrI 0.30,0.60) secondary cases in the UK, and 0.24 (0.14,0.48) secondary cases in the NL. A majority of cases did not generate any secondary cases. Recent transmission accounted for 39% (26%,60%) of UK cases and 23%(13%,37%) of NL cases. We predict that reducing UK transmission rates to those observed in the NL would result in 538(266,818) fewer cases annually in the UK. In conclusion, while TB in low incidence countries is strongly associated with reactivated infections, we demonstrate that recent transmission remains sufficient to warrant policies aimed at limiting local TB spread.


Assuntos
Modelos Biológicos , Tuberculose , Biologia Computacional , Epidemiologia , Humanos , Incidência , Mycobacterium tuberculosis/genética , Países Baixos/epidemiologia , Tuberculose/epidemiologia , Tuberculose/transmissão , Reino Unido/epidemiologia
19.
Sci Rep ; 9(1): 19922, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882653

RESUMO

Substantial differences exist in virulence among Mycobacterium tuberculosis strains in preclinical TB models. In this study we show how virulence affects host responses in mice during the first four weeks of infection with a mycobacterial strain belonging to the Beijing, East-African-Indian or Euro-American lineage. BALB/c mice were infected with clinical isolates of the Beijing-1585 strain or the East-African Indian (EAI)-1627 strain and host responses were compared to mice infected with the non-clinical H37Rv strain of the Euro-American lineage. We found that H37Rv induced a 'classical' T-cell influx with high IFN-γ levels, while Beijing-1585 and EAI-1627 induced an influx of B-cells into the lungs together with elevated pulmonary IL-4 protein levels. Myeloid cells in the lungs appeared functionally impaired upon infection with Beijing-1585 and EAI-1627 with reduced iNOS and IL-12 expression levels compared to H37Rv infection. This impairment might be related to significantly reduced expression in the bone marrow of IFN-γ, TNF-α and IFN-ß in mice infected with Beijing-1585 and EAI-1627, which could be detected from the third day post infection onwards. Our findings suggest that increased virulence of two clinical isolates compared to H37Rv is associated with a fundamentally different systemic immune response, which already can be detected early during infection.


Assuntos
Mycobacterium tuberculosis/patogenicidade , Animais , Medula Óssea/metabolismo , China , Feminino , Interferon gama/metabolismo , Interleucina-4/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Virulência
20.
Euro Surveill ; 24(50)2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31847944

RESUMO

BackgroundWhole genome sequencing (WGS) is a reliable tool for studying tuberculosis (TB) transmission. WGS data are usually processed by custom-built analysis pipelines with little standardisation between them.AimTo compare the impact of variability of several WGS analysis pipelines used internationally to detect epidemiologically linked TB cases.MethodsFrom the Netherlands, 535 Mycobacterium tuberculosis complex (MTBC) strains from 2016 were included. Epidemiological information obtained from municipal health services was available for all mycobacterial interspersed repeat unit-variable number of tandem repeat (MIRU-VNTR) clustered cases. WGS data was analysed using five different pipelines: one core genome multilocus sequence typing (cgMLST) approach and four single nucleotide polymorphism (SNP)-based pipelines developed in Oxford, United Kingdom; Borstel, Germany; Bilthoven, the Netherlands and Copenhagen, Denmark. WGS clusters were defined using a maximum pairwise distance of 12 SNPs/alleles.ResultsThe cgMLST approach and Oxford pipeline clustered all epidemiologically linked cases, however, in the other three SNP-based pipelines one epidemiological link was missed due to insufficient coverage. In general, the genetic distances varied between pipelines, reflecting different clustering rates: the cgMLST approach clustered 92 cases, followed by 84, 83, 83 and 82 cases in the SNP-based pipelines from Copenhagen, Oxford, Borstel and Bilthoven respectively.ConclusionConcordance in ruling out epidemiological links was high between pipelines, which is an important step in the international validation of WGS data analysis. To increase accuracy in identifying TB transmission clusters, standardisation of crucial WGS criteria and creation of a reference database of representative MTBC sequences would be advisable.


Assuntos
Epidemiologia Molecular/métodos , Tipagem de Sequências Multilocus/métodos , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Polimorfismo de Nucleotídeo Único , Tuberculose/epidemiologia , Sequenciamento Completo do Genoma/métodos , Transmissão de Doença Infecciosa , Monitoramento Epidemiológico , Humanos , Repetições Minissatélites , Mycobacterium tuberculosis/isolamento & purificação , Países Baixos , Sequências de Repetição em Tandem , Tuberculose/diagnóstico , Tuberculose/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA