Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Breast Cancer (Auckl) ; 14: 1178223420901555, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32009791

RESUMO

Hereditary breast cancer is an inherited genetic condition, mainly caused by BRCA1 and BRCA2 gene mutations. These genetic changes can increase the risks of breast and ovarian cancers in women, while prostate and breast cancers in men. Especially, mutations in either BRCA1 or BRCA2 genes take important roles in early-onset breast cancer. The present study focused on a 47-year-old Vietnamese woman with breast cancer by applying targeted next-generation sequencing technique. A novel BRCA1 gene mutation, namely NM_007294.3 (BRCA1): c.4998insA (p. Tyr1666Terfs), was identified both in this patient and in some of the members in her family proved the fact that the mutated genes passed down through generations. This change may exponentially initiate breast cancer risks and become a valuable marker for exact clinical prognosis and treatment.

3.
J Nanosci Nanotechnol ; 18(10): 7177-7182, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29954555

RESUMO

The degradation of Pt-based catalysts is considered as the main barrier to the commercialization of fuel cells. M-doped TiO2 (M is a transition metal) has been investigated to improve the stability of electrocatalysts. Recently, W-doped TiO2 materials have been found as a good catalyst support for the photocatalyst applications but their application in Proton-exchange membrane fuel cell application has rarely been reported. In addition, the agglomeration of nanoparticles, which are synthesized from the organic precursor, has been reported. Here, we report Ti0.7W0.3O2 nanoparticles prepared via a one-step solvothermal method with inorganic precursors without using surfactants or stabilizers for restricting nanoparticle agglomeration. The properties of the material were measured by XRD, TEM, BET, and electronic conductivity. The mean particle size of ∼5 nm, the high specific surface area of 126.471 m2/g and a moderate electronic conductivity of 0.014 S/cm were obtained for the sample prepared at 220 °C for 4 h. It was observed that using inorganic precursors to prevent particle agglomeration is more advantageous compared to organic precursors as mentioned in previous reports.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA