Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Genome Biol ; 25(1): 123, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760655

RESUMO

BACKGROUND: Vision depends on the interplay between photoreceptor cells of the neural retina and the underlying retinal pigment epithelium (RPE). Most genes involved in inherited retinal diseases display specific spatiotemporal expression within these interconnected retinal components through the local recruitment of cis-regulatory elements (CREs) in 3D nuclear space. RESULTS: To understand the role of differential chromatin architecture in establishing tissue-specific expression at inherited retinal disease loci, we mapped genome-wide chromatin interactions using in situ Hi-C and H3K4me3 HiChIP on neural retina and RPE/choroid from human adult donor eyes. We observed chromatin looping between active promoters and 32,425 and 8060 candidate CREs in the neural retina and RPE/choroid, respectively. A comparative 3D genome analysis between these two retinal tissues revealed that 56% of 290 known inherited retinal disease genes were marked by differential chromatin interactions. One of these was ABCA4, which is implicated in the most common autosomal recessive inherited retinal disease. We zoomed in on retina- and RPE-specific cis-regulatory interactions at the ABCA4 locus using high-resolution UMI-4C. Integration with bulk and single-cell epigenomic datasets and in vivo enhancer assays in zebrafish revealed tissue-specific CREs interacting with ABCA4. CONCLUSIONS: Through comparative 3D genome mapping, based on genome-wide, promoter-centric, and locus-specific assays of human neural retina and RPE, we have shown that gene regulation at key inherited retinal disease loci is likely mediated by tissue-specific chromatin interactions. These findings do not only provide insight into tissue-specific regulatory landscapes at retinal disease loci, but also delineate the search space for non-coding genomic variation underlying unsolved inherited retinal diseases.


Assuntos
Cromatina , Retina , Doenças Retinianas , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Cromatina/metabolismo , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Retina/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Regiões Promotoras Genéticas , Loci Gênicos , Peixe-Zebra/genética , Sequências Reguladoras de Ácido Nucleico , Genoma Humano
2.
Genome Med ; 16(1): 7, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184646

RESUMO

BACKGROUND: 5' untranslated regions (5'UTRs) are essential modulators of protein translation. Predicting the impact of 5'UTR variants is challenging and rarely performed in routine diagnostics. Here, we present a combined approach of a comprehensive prioritization strategy and functional assays to evaluate 5'UTR variation in two large cohorts of patients with inherited retinal diseases (IRDs). METHODS: We performed an isoform-level re-analysis of retinal RNA-seq data to identify the protein-coding transcripts of 378 IRD genes with highest expression in retina. We evaluated the coverage of their 5'UTRs by different whole exome sequencing (WES) kits. The selected 5'UTRs were analyzed in whole genome sequencing (WGS) and WES data from IRD sub-cohorts from the 100,000 Genomes Project (n = 2397 WGS) and an in-house database (n = 1682 WES), respectively. Identified variants were annotated for 5'UTR-relevant features and classified into seven categories based on their predicted functional consequence. We developed a variant prioritization strategy by integrating population frequency, specific criteria for each category, and family and phenotypic data. A selection of candidate variants underwent functional validation using diverse approaches. RESULTS: Isoform-level re-quantification of retinal gene expression revealed 76 IRD genes with a non-canonical retina-enriched isoform, of which 20 display a fully distinct 5'UTR compared to that of their canonical isoform. Depending on the probe design, 3-20% of IRD genes have 5'UTRs fully captured by WES. After analyzing these regions in both cohorts, we prioritized 11 (likely) pathogenic variants in 10 genes (ARL3, MERTK, NDP, NMNAT1, NPHP4, PAX6, PRPF31, PRPF4, RDH12, RD3), of which 7 were novel. Functional analyses further supported the pathogenicity of three variants. Mis-splicing was demonstrated for the PRPF31:c.-9+1G>T variant. The MERTK:c.-125G>A variant, overlapping a transcriptional start site, was shown to significantly reduce both luciferase mRNA levels and activity. The RDH12:c.-123C>T variant was found in cis with the hypomorphic RDH12:c.701G>A (p.Arg234His) variant in 11 patients. This 5'UTR variant, predicted to introduce an upstream open reading frame, was shown to result in reduced RDH12 protein but unaltered mRNA levels. CONCLUSIONS: This study demonstrates the importance of 5'UTR variants implicated in IRDs and provides a systematic approach for 5'UTR annotation and validation that is applicable to other inherited diseases.


Assuntos
Nicotinamida-Nucleotídeo Adenililtransferase , Doenças Retinianas , Humanos , Regiões 5' não Traduzidas , c-Mer Tirosina Quinase , Retina , Doenças Retinianas/genética , Isoformas de Proteínas , Oxirredutases do Álcool
3.
J Vitreoretin Dis ; 7(1): 33-42, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008391

RESUMO

Purpose: To clinically and molecularly study a newly found family with North Carolina macular dystrophy (NCMD/MCDR1) from Mexico. Methods: This retrospective study comprised 6 members of a 3-generation Mexican family with NCMD. Clinical ophthalmic examinations, including fundus imaging, spectral-domain optical coherence tomography, electroretinography, and electrooculography, were performed. Genotyping with polymorphic markers in the MCDR1 region was performed to determine haplotypes. Whole-genome sequencing (WGS) was performed followed by variant filtering and copy number variant analysis. Results: Four subjects from 3 generations were found to have macular abnormalities. The proband presented with lifelong bilateral vision impairment with bilaterally symmetric vitelliform Best disease-like appearing macular lesions. Her 2 children had bilateral large macular coloboma-like malformations, consistent with autosomal dominant NCMD. The 80-year-old mother of the proband had drusen-like lesions consistent with grade 1 NCMD. WGS and subsequent Sanger sequencing found a point mutation at chr6:99593030G>C (hg38) in the noncoding region of the DNase I site thought to be a regulatory element of the retinal transcription factor gene PRDM13. This mutation is the identical site/nucleotide as in the original NCMD family (#765) but is a guanine to cytosine change rather than a guanine to thymine mutation, as found in the original NCMD family. Conclusions: We report a new noncoding mutation at the same locus (chr6:99593030G>C) involving the same DNase I site regulating the retinal transcription factor gene PRDM13. This suggests that this site, chr6:99593030, is a mutational hotspot.

4.
Am J Hum Genet ; 109(11): 2029-2048, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36243009

RESUMO

North Carolina macular dystrophy (NCMD) is a rare autosomal-dominant disease affecting macular development. The disease is caused by non-coding single-nucleotide variants (SNVs) in two hotspot regions near PRDM13 and by duplications in two distinct chromosomal loci, overlapping DNase I hypersensitive sites near either PRDM13 or IRX1. To unravel the mechanisms by which these variants cause disease, we first established a genome-wide multi-omics retinal database, RegRet. Integration of UMI-4C profiles we generated on adult human retina then allowed fine-mapping of the interactions of the PRDM13 and IRX1 promoters and the identification of eighteen candidate cis-regulatory elements (cCREs), the activity of which was investigated by luciferase and Xenopus enhancer assays. Next, luciferase assays showed that the non-coding SNVs located in the two hotspot regions of PRDM13 affect cCRE activity, including two NCMD-associated non-coding SNVs that we identified herein. Interestingly, the cCRE containing one of these SNVs was shown to interact with the PRDM13 promoter, demonstrated in vivo activity in Xenopus, and is active at the developmental stage when progenitor cells of the central retina exit mitosis, suggesting that this region is a PRDM13 enhancer. Finally, mining of single-cell transcriptional data of embryonic and adult retina revealed the highest expression of PRDM13 and IRX1 when amacrine cells start to synapse with retinal ganglion cells, supporting the hypothesis that altered PRDM13 or IRX1 expression impairs interactions between these cells during retinogenesis. Overall, this study provides insight into the cis-regulatory mechanisms of NCMD and supports that this condition is a retinal enhanceropathy.


Assuntos
Distrofias Hereditárias da Córnea , Tomografia de Coerência Óptica , Adulto , Animais , Humanos , Linhagem , Retina/metabolismo , Xenopus laevis/genética
5.
Mol Vis ; 27: 518-527, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526759

RESUMO

Purpose: To clinically and molecularly investigate a new family with North Carolina macular dystrophy (NCMD) from Turkey, a previously unreported geographic origin for this phenotype. Methods: Clinical ophthalmic examinations, including fundus imaging and spectral domain-optical coherence tomography (SD-OCT), were performed on eight members of a two-generation non-consanguineous family from southern Turkey. Whole genome sequencing (WGS) was performed on two affected subjects, followed by variant filtering and copy number variant (CNV) analysis. Junction PCR and Sanger sequencing were used to confirm and characterize the duplication involving PRDM13 at the nucleotide level. The underlying mechanism was assessed with in silico analyses. Results: The proband presented with lifelong bilateral vision impairment and displayed large grade 3 coloboma-like central macular lesions. Five of her six children showed similar macular malformations, consistent with autosomal dominant NCMD. The severity grades in the six affected individuals from two generations are not evenly distributed. CNV analysis of WGS data of the two affected family members, followed by junction PCR and Sanger sequencing, revealed a novel 56.2 kb tandem duplication involving PRDM13 (chr6:99560265-99616492dup, hg38) at the MCDR1 locus. This duplication cosegregates with the NCMD phenotype in the five affected children. No other (likely) pathogenic variants in known inherited retinal disease genes were found in the WGS data. Bioinformatics analyses of the breakpoints suggest a replicative-based repair mechanism underlying the duplication. Conclusions: We report a novel tandem duplication involving the PRDM13 gene in a family with NCMD from a previously unreported geographic region. The duplication size is the smallest that has been reported thus far and may correlate with the particular phenotype.


Assuntos
Povo Asiático/genética , Distrofias Hereditárias da Córnea/genética , Duplicação Gênica , Histona-Lisina N-Metiltransferase/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Criança , Pré-Escolar , Cromossomos Humanos Par 6/genética , Distrofias Hereditárias da Córnea/diagnóstico por imagem , Feminino , Ligação Genética , Humanos , Masculino , Linhagem , Reação em Cadeia da Polimerase , Tomografia de Coerência Óptica , Turquia/epidemiologia , Sequenciamento Completo do Genoma
6.
Sci Rep ; 11(1): 117, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420188

RESUMO

We describe both phenotype and pathogenesis in two male siblings with typical retinitis pigmentosa (RP) and the potentially X-linked RP (XLRP) carrier phenotype in their mother. Two affected sons, two unaffected daughters, and their mother underwent detailed ophthalmological assessments including Goldmann perimetry, color vision testing, multimodal imaging and ISCEV-standard electroretinography. Genetic testing consisted of targeted next-generation sequencing (NGS) of known XLRP genes and whole exome sequencing (WES) of known inherited retinal disease genes (RetNet-WES). Variant validation and segregation analysis were performed by Sanger sequencing. The mutational load of the RHO variant in the mother was assessed in DNA from leucocytes, buccal cells and hair follicles using targeted NGS. Both affected sons showed signs of classical RP, while the mother displayed patches of hyperautofluorescence on blue light autofluorescence imaging and regional, intraretinal, spicular pigmentation, reminiscent of a carrier phenotype of XLRP. XLRP testing was negative. RetNet-WES testing revealed RHO variant c.404G > C p.(Arg135Pro) in a mosaic state (21% of the reads) in the mother and in a heterozygous state in both sons. Targeted NGQSS of the RHO variant in different maternal tissues showed a mutation load between 25.06% and 41.72%. We report for the first time that somatic mosaicism of RHO variant c.404G > C p.(Arg135Pro) mimics the phenotype of a female carrier of XLRP, in combination with heterozygosity for the variant in the two affected sons.


Assuntos
Mosaicismo , Retinose Pigmentar/genética , Rodopsina/genética , Adulto , Sequência de Bases , Feminino , Dosagem de Genes , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Mutação Puntual , Retinose Pigmentar/congênito , Retinose Pigmentar/metabolismo , Rodopsina/metabolismo , Adulto Jovem
7.
Genet Med ; 21(4): 1028, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30607024

RESUMO

The original version of this Article contained an incorrect version of Fig. 3, which included two variants initially shown in black text in Fig. 3a that the authors removed from the final manuscript. The correct version of Fig. 3 without the two variants now appears in the PDF and HTML versions of the Article.

8.
Genet Med ; 21(8): 1998, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30297699

RESUMO

The original version of this Article contained an error in the spelling of the author Anja K. Mayer, which was incorrectly given as Anja Kathrin Mayer. This has now been corrected in both the PDF and HTML versions of the Article.

9.
Genet Med ; 21(6): 1319-1329, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30377383

RESUMO

PURPOSE: RAX2 encodes a homeobox-containing transcription factor, in which four monoallelic pathogenic variants have been described in autosomal dominant cone-dominated retinal disease. METHODS: Exome sequencing in a European cohort with inherited retinal disease (IRD) (n = 2086) was combined with protein structure modeling of RAX2 missense variants, bioinformatics analysis of deletion breakpoints, haplotyping of RAX2 variant c.335dup, and clinical assessment of biallelic RAX2-positive cases and carrier family members. RESULTS: Biallelic RAX2 sequence and structural variants were found in five unrelated European index cases, displaying nonsyndromic autosomal recessive retinitis pigmentosa (ARRP) with an age of onset ranging from childhood to the mid-40s (average mid-30s). Protein structure modeling points to loss of function of the novel recessive missense variants and to a dominant-negative effect of the reported dominant RAX2 alleles. Structural variants were fine-mapped to disentangle their underlying mechanisms. Haplotyping of c.335dup in two cases suggests a common ancestry. CONCLUSION: This study supports a role for RAX2 as a novel disease gene for recessive IRD, broadening the mutation spectrum from sequence to structural variants and revealing a founder effect. The identification of biallelic RAX2 pathogenic variants in five unrelated families shows that RAX2 loss of function may be a nonnegligible cause of IRD in unsolved ARRP cases.


Assuntos
Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Retinose Pigmentar/genética , Fatores de Transcrição/genética , Adulto , Análise Mutacional de DNA/métodos , Proteínas do Olho/metabolismo , Proteínas do Olho/fisiologia , Feminino , Genes Recessivos/genética , Estudos de Associação Genética/métodos , Genótipo , Haplótipos/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Mutação de Sentido Incorreto/genética , Linhagem , Fenótipo , Retina/metabolismo , Retina/patologia , Doenças Retinianas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , População Branca/genética
10.
Genet Med ; 20(2): 202-213, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28749477

RESUMO

PurposePart of the hidden genetic variation in heterogeneous genetic conditions such as inherited retinal diseases (IRDs) can be explained by copy-number variations (CNVs). Here, we explored the genomic landscape of IRD genes listed in RetNet to identify and prioritize those genes susceptible to CNV formation.MethodsRetNet genes underwent an assessment of genomic features and of CNV occurrence in the Database of Genomic Variants and literature. CNVs identified in an IRD cohort were characterized using targeted locus amplification (TLA) on extracted genomic DNA.ResultsExhaustive literature mining revealed 1,345 reported CNVs in 81 different IRD genes. Correlation analysis between rankings of genomic features and CNV occurrence demonstrated the strongest correlation between gene size and CNV occurrence of IRD genes. Moreover, we identified and delineated 30 new CNVs in IRD cases, 13 of which are novel and three of which affect noncoding, putative cis-regulatory regions. Finally, the breakpoints of six complex CNVs were determined using TLA in a hypothesis-neutral manner.ConclusionWe propose a ranking of CNV-prone IRD genes and demonstrate the efficacy of TLA for the characterization of CNVs on extracted DNA. Finally, this IRD-oriented CNV study can serve as a paradigm for other genetically heterogeneous Mendelian diseases with hidden genetic variation.


Assuntos
Mapeamento Cromossômico , Variações do Número de Cópias de DNA , Genoma Humano , Genômica , Fases de Leitura Aberta , RNA não Traduzido , Doenças Retinianas/genética , Alelos , Proteínas Relacionadas a Caderinas , Caderinas/genética , Bases de Dados Genéticas , Proteínas do Olho/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genômica/métodos , Humanos , Sequências Reguladoras de Ácido Nucleico , Doenças Retinianas/diagnóstico , Análise de Sequência de DNA , Deleção de Sequência
11.
Sci Rep ; 7(1): 18025, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29269865

RESUMO

Hereditary hyperferritinaemia-cataract syndrome (HHCS) is a rare disorder usually caused by heterozygous mutations in the iron-responsive element (IRE) in the 5' untranslated region (5'UTR) of the L-ferritin gene (FTL), disturbing the binding of iron regulatory proteins (IRPs) and the post-transcriptional regulation of ferritin expression. Here, the proband of a consanguineous family displayed moderate bilateral cataracts and elevated serum ferritin in the absence of iron overload. The parents and siblings showed variable degrees of mild bilateral cataracts combined with elevated levels of circulating ferritin. Sequencing of FTL identified a novel 5'UTR mutation c.-151A > G, also named "Ghent +49A > G". The zygosity of the mutation, occurring in homozygous and heterozygous state in the proband and other affected family members respectively, correlated well with severity of ophthalmological and hematological manifestations. The substitution is expected to impair the secondary structure of the upper IRE stem. Functional characterization of +49A > G by electrophoretic mobility shift assays demonstrated a reduced binding affinity for IRP1 compared to the wild-type IRE of FTL. Overall, we have expanded the repertoire of deleterious biallelic FTL IRE mutations in HHCS with this novel +49A > G mutation, the zygosity of which correlated well with the disease expression.


Assuntos
Apoferritinas/genética , Catarata/congênito , Distúrbios do Metabolismo do Ferro/congênito , Mutação , Adolescente , Adulto , Catarata/genética , Criança , Feminino , Humanos , Ferro/metabolismo , Distúrbios do Metabolismo do Ferro/genética , Masculino , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA