Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 26(12): 2029-2042, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37882483

RESUMO

Although the role of host movement in shaping infectious disease dynamics is widely acknowledged, methodological separation between animal movement and disease ecology has prevented researchers from leveraging empirical insights from movement data to advance landscape scale understanding of infectious disease risk. To address this knowledge gap, we examine how movement behaviour and resource utilization by white-tailed deer (Odocoileus virginianus) determines blacklegged tick (Ixodes scapularis) distribution, which depend on deer for dispersal in a highly fragmented New York City borough. Multi-scale hierarchical resource selection analysis and movement modelling provide insight into how deer's movements contribute to the risk landscape for human exposure to the Lyme disease vector-I. scapularis. We find deer select highly vegetated and accessible residential properties which support blacklegged tick survival. We conclude the distribution of tick-borne disease risk results from the individual resource selection by deer across spatial scales in response to habitat fragmentation and anthropogenic disturbances.


Assuntos
Doenças Transmissíveis , Cervos , Ixodes , Infestações por Carrapato , Humanos , Animais , Animais Selvagens , Cidade de Nova Iorque , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária , Ixodes/fisiologia
2.
Glob Chang Biol ; 28(5): 1705-1724, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34889003

RESUMO

The ongoing COVID-19 pandemic is a stark reminder of the devastating consequences of pathogen spillover from wildlife to human hosts, particularly in densely populated urban centers. Prevention of future zoonotic disease is contingent on informed surveillance for known and novel threats across diverse human-wildlife interfaces. Cities are a key venue for potential spillover events because of the presence of zoonotic pathogens transmitted by hosts and vectors living in close proximity to dense human settlements. Effectively identifying and managing zoonotic hazards requires understanding the socio-ecological processes driving hazard distribution and pathogen prevalence in dynamic and heterogeneous urban landscapes. Despite increasing awareness of the human health impacts of zoonotic hazards, the integration of an eco-epidemiological perspective into public health management plans remains limited. Here we discuss how landscape patterns, abiotic conditions, and biotic interactions influence zoonotic hazards across highly urbanized cities (HUCs) in temperate climates to promote their efficient and effective management by a multi-sectoral coalition of public health stakeholders. We describe how to interpret both direct and indirect ecological processes, incorporate spatial scale, and evaluate networks of connectivity specific to different zoonotic hazards to promote biologically-informed and targeted decision-making. Using New York City, USA as a case study, we identify major zoonotic threats, apply knowledge of relevant ecological factors, and highlight opportunities and challenges for research and intervention. We aim to broaden the toolbox of urban public health stakeholders by providing ecologically-informed, practical guidance for the evaluation and management of zoonotic hazards.


Assuntos
COVID-19 , Pandemias , Animais , Cidades , Humanos , SARS-CoV-2 , Zoonoses/epidemiologia
3.
J Med Entomol ; 58(4): 1546-1564, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-33095859

RESUMO

The incidence of tick-borne diseases has increased in recent decades and accounts for the majority of vector-borne disease cases in temperate areas of Europe, North America, and Asia. This emergence has been attributed to multiple and interactive drivers including changes in climate, land use, abundance of key hosts, and people's behaviors affecting the probability of human exposure to infected ticks. In this forum paper, we focus on how land use changes have shaped the eco-epidemiology of Ixodes scapularis-borne pathogens, in particular the Lyme disease spirochete Borrelia burgdorferi sensu stricto in the eastern United States. We use this as a model system, addressing other tick-borne disease systems as needed to illustrate patterns or processes. We first examine how land use interacts with abiotic conditions (microclimate) and biotic factors (e.g., host community composition) to influence the enzootic hazard, measured as the density of host-seeking I. scapularis nymphs infected with B. burgdorferi s.s. We then review the evidence of how specific landscape configuration, in particular forest fragmentation, influences the enzootic hazard and disease risk across spatial scales and urbanization levels. We emphasize the need for a dynamic understanding of landscapes based on tick and pathogen host movement and habitat use in relation to human resource provisioning. We propose a coupled natural-human systems framework for tick-borne diseases that accounts for the multiple interactions, nonlinearities and feedbacks in the system and conclude with a call for standardization of methodology and terminology to help integrate studies conducted at multiple scales.


Assuntos
Florestas , Doença de Lyme/transmissão , Animais , Borrelia burgdorferi , Humanos , Ixodes/microbiologia , Doença de Lyme/epidemiologia , Medição de Risco , Estados Unidos/epidemiologia , Urbanização
4.
Int J Parasitol ; 51(2-3): 149-157, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33130214

RESUMO

Haemaphysalis longicornis, the Asian longhorned tick, is an invasive ixodid tick that has rapidly spread across the northeastern and southeastern regions of the United States since first reported in 2017. The emergence of H. longicornis presents a potential threat for livestock, wildlife, and human health as the host associations and vector potential of this invasive pest in the United States are poorly understood. Previous field data from the United States has shown that H. longicornis was not associated with natural populations of small mammals or birds, but they show a preference for medium sized mammals in laboratory experiments. Therefore, medium and large sized mammals were sampled on Staten Island, New York, United States, to determine H. longicornis host associations and vector potential for a range of human and veterinary pathogens. A total of 97 hosts were sampled and five species of tick (Amblyomma americanum, Dermacentor variabilis, H. longicornis, Ixodes scapularis, Ixodes cookei) were found feeding concurrently on these hosts. Haemaphysalis longicornis was found in the highest proportions compared with other native tick species on raccoons (55.4%), Virginia opossums (28.9%), and white-tailed deer (11.5%). Tissue, blood, and engorged larvae were tested for 17 different pathogens using a nanoscale PCR platform. Infection with five pathogens (Borrelia burgdorferi, Anaplasma phagocytophilum, Rickettsia spp., Mycoplasma haemocanis, and Bartonella spp.) was detected in host samples, but no pathogens were found in any larval samples. These results suggest that although large and medium sized mammals feed large numbers of H. longicornis ticks in the environment, there is presently a low potential for H. longicornis to acquire pathogens from these wildlife hosts.


Assuntos
Cervos , Didelphis/parasitologia , Ixodes , Guaxinins/parasitologia , Infestações por Carrapato , Animais , Cervos/parasitologia , Ixodes/microbiologia , Mycoplasma , Cidade de Nova Iorque , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária
5.
Ticks Tick Borne Dis ; 11(6): 101516, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32993936

RESUMO

Haemaphysalis longicornis, the Asian longhorned tick, is an invasive tick species that has spread rapidly across the northeastern and southeastern regions of the United States in recent years. This invasive pest species, known to transmit several tick-borne pathogens in its native range, is a potential threat to wildlife, livestock, domestic animals, and humans. Questing larval (n = 25), nymph (n = 10), and adult (n = 123), along with host-derived adult (n = 25) H. longicornis ticks were collected from various locations on Staten Island, NY. The pathobiome of each specimen was examined using two different high throughput sequencing approaches, virus enrichment and shotgun metagenomics. An average of 45,828,061 total reads per sample were recovered from the virus enriched samples and an average of 11,381,144 total reads per sample were obtained using shotgun metagenomics. Aside from endogenous viral sequences, no viruses were identified through either approach. Through shotgun metagenomics, Coxiella-like bacteria, Legionella, Sphingomonas, and other bacterial species were recovered. The Coxiella-like agent was ubiquitous and present at high abundances in all samples, suggesting it may be an endosymbiont. The other bacterial agents are not known to be transmitted by ticks. From these analyses, H. longicornis do not appear to host any endemic human tick-borne pathogens in the New York City region.


Assuntos
Ixodidae/microbiologia , Metagenoma , Microbiota , Viroma , Animais , Ixodidae/crescimento & desenvolvimento , Ixodidae/virologia , Larva/crescimento & desenvolvimento , Larva/microbiologia , Larva/virologia , Metagenômica , Cidade de Nova Iorque , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia , Ninfa/virologia
6.
Zoonoses Public Health ; 67(6): 637-650, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32638553

RESUMO

Established populations of Asian longhorned ticks (ALT), Haemaphysalis longicornis, were first identified in the United States (US) in 2017 by sequencing the mitochondrial cytochrome c oxidase subunit I (cox1) 'barcoding' locus followed by morphological confirmation. Subsequent investigations detected ALT infestations in 12, mostly eastern, US states. To gain information on the origin and spread of US ALT, we (1) sequenced cox1 from ALT populations across 9 US states and (2) obtained cox1 sequences from potential source populations [China, Japan and Republic of Korea (ROK) as well as Australia, New Zealand and the Kingdom of Tonga (KOT)] both by sequencing and by downloading publicly available sequences in NCBI GenBank. Additionally, we conducted epidemiological investigations of properties near its initial detection locale in Hunterdon County, NJ, as well as a broader risk analysis for importation of ectoparasites into the area. In eastern Asian populations (China/Japan/ROK), we detected 35 cox1 haplotypes that neatly clustered into two clades with known bisexual versus parthenogenetic phenotypes. In Australia/New Zealand/KOT, we detected 10 cox1 haplotypes all falling within the parthenogenetic cluster. In the United States, we detected three differentially distributed cox1 haplotypes from the parthenogenetic cluster, supporting phenotypic evidence that US ALT are parthenogenetic. While none of the source populations examined had all three US cox1 haplotypes, a phylogeographic network analysis supports a northeast Asian source for the US populations. Within the United States, epidemiological investigations indicate ALT can be moved long distances by human transport of animals, such as horses and dogs, with smaller scale movements on wildlife. These results have relevant implications for efforts aimed at minimizing the spread of ALT in the United States and preventing additional exotic tick introductions.


Assuntos
Distribuição Animal , Ixodidae/fisiologia , Animais , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Regulação Enzimológica da Expressão Gênica , Estados Unidos
7.
Ecohealth ; 16(2): 235-247, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31346852

RESUMO

An important contribution to infectious disease emergence in wildlife is environmental degradation driven by pollution, habitat fragmentation, and eutrophication. Amphibians are a wildlife group that is particularly sensitive to land use change, infectious diseases, and their interactions. Residential suburban land use is now a dominant, and increasing, form of land cover in the USA and globally, contributing to increased pollutant and nutrient loading in freshwater systems. We examined how suburbanization affects the infection of green frog (Rana clamitans) tadpoles and metamorphs by parasitic flatworms (Echinostoma spp.) through the alteration of landscapes surrounding ponds and concomitant changes in water quality. Using sixteen small ponds along a forest-suburban land use gradient, we assessed how the extent of suburban land use surrounding ponds influenced echinostome infection in both primary snail and secondary frog hosts. Our results show that the degree of suburbanization and concurrent chemical loading are positively associated with the presence and burden of echinostome infection in both host populations. This work contributes to a broader understanding of how land use mediates wildlife parasitism and shows how human activities at the household scale can have similar consequences for wildlife health as seemingly more intensive land uses like agriculture or urbanization.


Assuntos
Echinostoma , Equinostomíase/veterinária , Rana clamitans/parasitologia , Caramujos/parasitologia , População Suburbana/estatística & dados numéricos , Animais , Connecticut , Equinostomíase/epidemiologia , Equinostomíase/etiologia , Larva/parasitologia , Lagoas
8.
J Hered ; 110(3): 261-274, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067326

RESUMO

The outbreak and transmission of disease-causing pathogens are contributing to the unprecedented rate of biodiversity decline. Recent advances in genomics have coalesced into powerful tools to monitor, detect, and reconstruct the role of pathogens impacting wildlife populations. Wildlife researchers are thus uniquely positioned to merge ecological and evolutionary studies with genomic technologies to exploit unprecedented "Big Data" tools in disease research; however, many researchers lack the training and expertise required to use these computationally intensive methodologies. To address this disparity, the inaugural "Genomics of Disease in Wildlife" workshop assembled early to mid-career professionals with expertise across scientific disciplines (e.g., genomics, wildlife biology, veterinary sciences, and conservation management) for training in the application of genomic tools to wildlife disease research. A horizon scanning-like exercise, an activity to identify forthcoming trends and challenges, performed by the workshop participants identified and discussed 5 themes considered to be the most pressing to the application of genomics in wildlife disease research: 1) "Improving communication," 2) "Methodological and analytical advancements," 3) "Translation into practice," 4) "Integrating landscape ecology and genomics," and 5) "Emerging new questions." Wide-ranging solutions from the horizon scan were international in scope, itemized both deficiencies and strengths in wildlife genomic initiatives, promoted the use of genomic technologies to unite wildlife and human disease research, and advocated best practices for optimal use of genomic tools in wildlife disease projects. The results offer a glimpse of the potential revolution in human and wildlife disease research possible through multi-disciplinary collaborations at local, regional, and global scales.


Assuntos
Doenças dos Animais/etiologia , Animais Selvagens , Genômica , Pesquisa , Doenças dos Animais/epidemiologia , Doenças dos Animais/transmissão , Animais , Biodiversidade , Evolução Biológica , Biologia Computacional/métodos , Suscetibilidade a Doenças , Ecologia , Meio Ambiente , Genoma , Genômica/métodos , Interações Hospedeiro-Patógeno/genética , Humanos
9.
Emerg Infect Dis ; 25(6): 1136-1143, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31107213

RESUMO

Most tickborne disease studies in the United States are conducted in low-intensity residential development and forested areas, leaving much unknown about urban infection risks. To understand Lyme disease risk in New York, New York, USA, we conducted tick surveys in 24 parks throughout all 5 boroughs and assessed how park connectivity and landscape composition contribute to Ixodes scapularis tick nymphal densities and Borrelia burgdorferi infection. We used circuit theory models to determine how parks differentially maintain landscape connectivity for white-tailed deer, the reproductive host for I. scapularis ticks. We found forested parks with vegetated buffers and increased connectivity had higher nymph densities, and the degree of park connectivity strongly determined B. burgdorferi nymphal infection prevalence. Our study challenges the perspective that tickborne disease risk is restricted to suburban and natural settings and emphasizes the need to understand how green space design affects vector and host communities in areas of emerging urban tickborne disease.


Assuntos
Distribuição Animal , Borrelia burgdorferi/isolamento & purificação , Ixodes/microbiologia , Doença de Lyme/epidemiologia , Parques Recreativos , Animais , Ecossistema , Humanos , Ixodes/fisiologia , Doença de Lyme/transmissão , Cidade de Nova Iorque/epidemiologia , Ninfa/microbiologia , Ninfa/fisiologia , Fatores de Risco
10.
Emerg Infect Dis ; 25(4): 792-796, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30681071

RESUMO

Haemaphysalis longicornis, an invasive Ixodid tick, was recently reported in the eastern United States. The emergence of these ticks represents a potential threat for livestock, wildlife, and human health. We describe the distribution, host-seeking phenology, and host and habitat associations of these ticks on Staten Island, New York, a borough of New York City.


Assuntos
Espécies Introduzidas , Ixodidae , Infestações por Carrapato/parasitologia , Carrapatos , Animais , Interações Hospedeiro-Parasita , Cidade de Nova Iorque , Infestações por Carrapato/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA