Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 292(12): 4801-4810, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28154008

RESUMO

Fungal cell walls contain ß-glucan polysaccharides that stimulate immune responses when recognized by host immune cells. The fungal pathogen Histoplasma capsulatum minimizes detection of ß-glucan by host cells through at least two mechanisms: concealment of ß-glucans beneath α-glucans and enzymatic removal of any exposed ß-glucan polysaccharides by the secreted glucanase Eng1. Histoplasma yeasts also secrete the putative glucanase Exg8, which may serve a similar role as Eng1 in removing exposed ß-glucans from the yeast cell surface. Here, we characterize the enzymatic specificity of the Eng1 and Exg8 proteins and show that Exg8 is an exo-ß1,3-glucanase and Eng1 is an endo-ß1,3-glucanase. Together, Eng1 and Exg8 account for nearly all of the total secreted glucanase activity of Histoplasma yeasts. Both Eng1 and Exg8 proteins are secreted through a conventional secretion signal and are modified post-translationally by O-linked glycosylation. Both glucanases have near maximal activity at temperature and pH conditions experienced during infection of host cells, supporting roles in Histoplasma pathogenesis. Exg8 has a higher specific activity than Eng1 for ß1,3-glucans; yet despite this, Exg8 does not reduce detection of yeasts by the host ß-glucan receptor Dectin-1. Exg8 is largely dispensable for virulence in vivo, in contrast to Eng1. These results show that Histoplasma yeasts secrete two ß1,3-glucanases and that Eng1 endoglucanase activity is the predominant factor responsible for removal of exposed cell wall ß-glucans to minimize host detection of Histoplasma yeasts.


Assuntos
Glucana 1,3-beta-Glucosidase/metabolismo , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Histoplasma/enzimologia , Histoplasmose/microbiologia , Histoplasma/metabolismo , Histoplasma/patogenicidade , Humanos , Especificidade por Substrato , beta-Glucanas/metabolismo
2.
BMC Res Notes ; 2: 135, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19604395

RESUMO

BACKGROUND: We previously developed a set of rationally designed mutant MICA protein ligands for the NKG2D immunoreceptor in which MICA was mutated at residues that do not contact NKG2D. Some of these MICA mutants, predicted by RosettaDesign to be destabilized, bound NKG2D with affinities enhanced by more than an order of magnitude when evaluated by surface plasmon resonance (SPR). FINDINGS: Small-zone size-exclusion chromatography (SEC) detected persistent high-affinity MICA mutant-NKG2D complexes in solution as early-eluting peaks. The SEC binding assay used standard protein purification instrumentation to evaluate complex stability, qualitatively paralleled the SPR results, and successfully discriminated among complexes that differed only in on-rates. We used the SEC binding assay, along with SPR, to assess the results of a follow-up design strategy targeting the non-interfacial redesigned region. Both SEC and SPR agreed that these mutations did not enhance affinity as much as previous mutants. When the SEC binding assay was run in 1 M urea, only the highest affinity complex was detected. CONCLUSION: This SEC binding assay provides a correlation with SPR results for protein complex affinities, detecting changes in complex on-rates, and tunable to lower sensitivity with 1 M urea. The SEC binding assay is complementary to other protein design evaluation methods, can be adapted to the undergraduate research laboratory, and may provide additional structural information about changes in hydrodynamic radii from elution times. Our assay allowed us to conclude that further alteration of MICA at non-contacting residues is unlikely to further enhance NKG2D affinity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA