Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Vision Res ; 218: 108379, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460402

RESUMO

Mutations in BEST1 cause an autosomal recessive disease in dogs where the earliest changes localize to the photoreceptor-RPE interface and show a retina-wide micro-detachment that is modulated by light exposure. The purpose of this study was to define the spatial and temporal details of the outer retina and its response to light with ultra-high resolution OCT across a range of ages and with different BEST1 mutations. Three retinal regions were selected in each eye: near the fovea-like area, near the optic nerve, both in the tapetal area, and inferior to the optic nerve in the non-tapetal area. The OS+ slab thickness was defined between the peak near the junction of inner and outer segments (IS/OS) and the transition between basal RPE, Bruch membrane, choriocapillaris and proximal tapetum (RPE/T). In wildtype (WT) dogs, two tapetal regions showed additional hyperscattering OCT peaks within the OS+ slab likely representing cone and rod outer segment tips (COST and ROST). The inferior non-tapetal region of WT dogs had only one of these peaks, likely ROST. In dogs with BEST1 mutations, all three locations showed a single peak, likely suggesting optical silence of COST. Light-dependent expansion of the micro-detachment by about 10 um was detectable in both tapetal and non-tapetal retina across all ages and BEST1 mutations.


Assuntos
Retina , Tomografia de Coerência Óptica , Cães , Animais , Células Fotorreceptoras Retinianas Cones , Visão Ocular
2.
Invest Ophthalmol Vis Sci ; 53(6): 3126-38, 2012 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-22499984

RESUMO

PURPOSE: These experiments assessed the ability of spectral-domain optical coherence tomography (SD-OCT) to accurately represent the structural organization of the adult zebrafish retina and reveal the dynamic morphologic changes during either light-induced damage and regeneration of photoreceptors or ouabain-induced inner retinal damage. METHODS: Retinas of control dark-adapted adult albino zebrafish were compared with retinas subjected to 24 hours of constant intense light and recovered for up to 8 weeks or ouabain-damaged retinas that recovered for up to 3 weeks. Images were captured and the measurements of retinal morphology were made by SD-OCT, and then compared with those obtained by histology of the same eyes. RESULTS: Measurements between SD-OCT and histology were very similar for the undamaged, damaged, and regenerating retinas. Axial measurements of SD-OCT also revealed vitreal morphology that was not readily visualized by histology. CONCLUSIONS: SD-OCT accurately represented retinal lamination and photoreceptor loss and recovery during light-induced damage and subsequent regeneration. SD-OCT was less accurate at detecting the inner nuclear layer in ouabain-damaged retinas, but accurately detected the undamaged outer nuclear layer. Thus, SD-OCT provides a noninvasive and quantitative method to assess the morphology and the extent of damage and repair in the zebrafish retina.


Assuntos
Recuperação de Função Fisiológica , Regeneração , Retina/fisiologia , Doenças Retinianas/patologia , Tomografia de Coerência Óptica/métodos , Animais , Adaptação à Escuridão , Modelos Animais de Doenças , Células Fotorreceptoras de Vertebrados/fisiologia , Doenças Retinianas/fisiopatologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA