Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Macromol Biosci ; 24(1): e2300001, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36786665

RESUMO

In an effort to augment the function of supramolecular biomaterials, recent efforts have explored the creation of hybrid materials that couple supramolecular and covalent components. Here, the benzenetricarboxamide (BTA) supramolecular polymer motif is modified to present a phenylboronic acid (PBA) in order to promote the crosslinking of 1D BTA stacks by PBA-diol dynamic-covalent bonds through the addition of a multi-arm diol-bearing crosslinker. Interestingly, the combination of these two motifs serves to frustrate the resulting assembly process, yielding hydrogels with worse mechanical properties than those prepared without the multi-arm diol crosslinker. Both systems with and without the crosslinker do, however, respond to the presence of a physiological level of glucose with a reduction in their mechanical integrity; repulsive electrostatic interactions in the BTA stacks occur in both cases upon glucose binding, with added competition from glucose with PBA-diol bonds amplifying glucose response in the hybrid material. Accordingly, the present results point to an unexpected outcome of reduced hydrogel mechanics, yet increased glucose response, when two disparate dynamic motifs of BTA supramolecular polymerization and PBA-diol crosslinking are combined, offering a vision for future preparation of glucose-responsive supramolecular biomaterials.


Assuntos
Ácidos Borônicos , Glucose , Ácidos Borônicos/química , Hidrogéis/química , Materiais Biocompatíveis
2.
Acta Pharm Sin B ; 13(5): 2281-2290, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37250160

RESUMO

Aggregation represents a significant challenge for the long-term formulation stability of insulin therapeutics. The supramolecular PEGylation of insulin with conjugates of cucurbit[7]uril and polyethylene glycol (CB[7]‒PEG) has been shown to stabilize insulin formulations by reducing aggregation propensity. Yet prolonged in vivo duration of action, arising from sustained complex formation in the subcutaneous depot, limits the application scope for meal-time insulin uses and could increase hypoglycemic risk several hours after a meal. Supramolecular affinity of CB[7] in binding the B1-Phe residue on insulin is central to supramolecular PEGylation using this approach. Accordingly, here we synthesized N-terminal acid-modified insulin analogs to reduce CB[7] interaction affinity at physiological pH and reduce the duration of action by decreasing the subcutaneous depot effect of the formulation. These insulin analogs show weak to no interaction with CB[7]‒PEG at physiological pH but demonstrate high formulation stability at reduced pH. Accordingly, N-terminal modified analogs have in vitro and in vivo bioactivity comparable to native insulin. Furthermore, in a rat model of diabetes, the acid-modified insulin formulated with CB[7]‒PEG offers a reduced duration of action compared to native insulin formulated with CB[7]‒PEG. This work extends the application of supramolecular PEGylation of insulin to achieve enhanced stability while reducing the risks arising from a subcutaneous depot effect prolonging in vivo duration of action.

3.
Biomacromolecules ; 24(1): 481-488, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36512327

RESUMO

Protein aggregation is an obstacle for the development of new biopharmaceuticals, presenting challenges in shipping and storage of vital therapies. Though a variety of materials and methods have been explored, the need remains for a simple material that is biodegradable, nontoxic, and highly efficient at stabilizing protein therapeutics. In this work, we investigated zwitterionic polypeptides prepared using a rapid and scalable polymerization technique and conjugated to a supramolecular macrocycle host, cucurbit[7]uril, for the ability to inhibit aggregation of model protein therapeutics insulin and calcitonin. The polypeptides are based on the natural amino acid methionine, and zwitterion sulfonium modifications were compared to analogous cationic and neutral structures. Each polymer was end-modified with a single cucurbit[7]uril macrocycle to afford supramolecular recognition and binding to terminal aromatic amino acids on proteins. Only conjugates prepared from zwitterionic structures of sufficient chain lengths were efficient inhibitors of insulin aggregation and could also inhibit aggregation of calcitonin. This polypeptide exhibited no cytotoxicity in human cells even at concentrations that were five-fold of the intended therapeutic regime. We explored treatment of the zwitterionic polypeptides with a panel of natural proteases and found steady biodegradation as expected, supporting eventual clearance when used as a protein formulation additive.


Assuntos
Hidrocarbonetos Aromáticos com Pontes , Estabilidade Proteica , Humanos , Hidrocarbonetos Aromáticos com Pontes/química , Calcitonina/química , Insulinas/química , Peptídeos/química
4.
ACS Biomater Sci Eng ; 8(11): 4873-4885, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36317822

RESUMO

Stimuli-responsive hydrogels are an area of active discovery for approaches to deliver therapeutics in response to disease-specific indicators. Glucose-responsive delivery of insulin is of particular interest in better managing diabetes. Accordingly, hydrogels have been explored as platforms that enable both a rate and dose of insulin release aligning with the real-time physiological disease state; materials often include glucose sensing by dynamic-covalent cross-linking between phenylboronic acids (PBAs) and diols, with competition from ambient glucose reducing cross-link density of the material and accelerating release of encapsulated insulin. Yet, these materials historically have challenges with insulin leakage, offer limited glucose-responsive release of the insulin payload, and require unreasonably high injection pressures for syringe administration. Here, a thermogel platform prepared from temperature-induced micelles formed into a network by PBA-Diol cross-linking is optimized using a formulation-centered approach to maximize glucose-responsive insulin delivery. Importantly, the dual-responsive nature of this platform enables a low-viscosity sol at ambient temperature for facile injection, solidifying into a stable viscoelastic hydrogel network once in the body. The final optimized formulation affords acceleration in insulin release in response to glucose and enables single dose blood glucose control in diabetic rodents when subjected to multiple glucose challenges.


Assuntos
Micelas , Poloxâmero , Glucose , Hidrogéis , Insulina/farmacologia
5.
ACS Nano ; 14(5): 5491-5505, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32297733

RESUMO

Natural proteins traverse complex free energy landscapes to assemble into hierarchically organized structures, often through stimuli-directed kinetic pathways in response to relevant biological cues. Bioinspired strategies have sought to emulate the complexity, dynamicity, and modularity exhibited in these natural processes with synthetic analogues. However, these efforts are limited by many factors that complicate the rational design and predictable assembly of synthetic constructs, especially in aqueous environments. Herein, a model discotic amphiphile gelator is described that undergoes pathway-dependent structural maturation when exposed to varying application rates of a pH stimulus, investigated by electron microscopy, spectroscopy, and X-ray scattering techniques. Under the direction of a slowly changing pH stimulus, complex hierarchical assemblies result, characterized by mesoscale elongated "superstructure" bundles embedded in a percolated mesh of narrow nanofibers. In contrast, the assembly under a rapidly applied pH stimulus is characterized by homogeneous structures that are reminiscent of the superstructures arising from the more deliberate path, except with significantly reduced scale and concomitantly large increases in bulk rheological properties. This synthetic system bears resemblance to the pathway complexity and hierarchical ordering observed for native structures, such as collagen, and points to fundamental design principles that might be applied toward enhanced control of the properties of supramolecular self-assembly across length scales.


Assuntos
Nanofibras , Cinética , Água
6.
Chem Sci ; 11(1): 195-200, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-32110371

RESUMO

Although insulin was first purified and used therapeutically almost a century ago, there is still a need to improve therapeutic efficacy and patient convenience. A key challenge is the requirement for refrigeration to avoid inactivation of insulin by aggregation/fibrillation. Here, in an effort to mitigate this problem, we introduced a 4th disulfide bond between a C-terminal extended insulin A chain and residues near the C-terminus of the B chain. Insulin activity was retained by an analog with an additional disulfide bond between residues A22 and B22, while other linkages tested resulted in much reduced potency. Furthermore, the A22-B22 analog maintains the native insulin tertiary structure as demonstrated by X-ray crystal structure determination. We further demonstrate that this four-disulfide analog has similar in vivo potency in mice compared to native insulin and demonstrates higher aggregation stability. In conclusion, we have discovered a novel four-disulfide insulin analog with high aggregation stability and potency.

7.
Macromol Rapid Commun ; 41(3): e1900565, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31880036

RESUMO

Nature realizes impressive structures and emergent functions through precisely organized non-covalent interactions, and this inspires the use of supramolecular motifs to engineer new materials. Herein, an amphiphilic peptide-terpyridine conjugate is reported that forms 1D nanostructures leading to hydrogels. Upon the addition of metal, a slow kinetic transition occurs, resulting in nanostructures which are dictated by the chosen metal binding to the terpyridine ligand. As such, bis-complex formation between terminal terpyridines redirects the assembly from peptide-driven 1D structures to an assortment of new nanostructures which evolve and appear over the course of weeks. Studies where pre-existing peptide structures are disrupted prior to metal addition yield these same structures right away, further confirming the kinetically labored pathway to their formation when beginning from an assembled state.


Assuntos
Hidrogéis/química , Metais/química , Nanoestruturas/química , Peptídeos/química , Piridinas/química , Dicroísmo Circular , Cinética , Ligantes , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Tensoativos/química
8.
J Med Chem ; 62(24): 11437-11443, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31804076

RESUMO

Insulin has been a life-saving drug for millions of people with diabetes. However, several challenges exist which limit therapeutic benefits and reduce patient convenience. One key challenge is the fibrillation propensity, which necessitates refrigeration for storage. To address this limitation, we chemically synthesized and evaluated a methylene thioacetal human insulin analogue (SCS-Ins). The synthesized SCS-Ins showed enhanced serum stability and aggregation resistance while retaining bioactivity compared with native insulin.


Assuntos
Dissulfetos/química , Desenho de Fármacos , Insulina/química , Fragmentos de Peptídeos/química , Compostos de Sulfidrila/química , Sequência de Aminoácidos , Animais , Dissulfetos/metabolismo , Estabilidade de Medicamentos , Feminino , Humanos , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/metabolismo , Conformação Proteica
9.
Nanoscale ; 11(35): 16534-16543, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31455952

RESUMO

Significant efforts in the field of supramolecular materials have strived to co-assemble small molecules in order to realize individual nanostructures with multiple, tunable activities. The design of self-assembling motifs bearing opposite charges is one commonly used method, with favorable electrostatic interactions used to promote mixing in a resulting co-assembly. This approach, at the same time, contrasts with a typical thermodynamic preference for self-sorting. Moreover, rigorous experimental techniques which can clearly elucidate co-assembly from self-sorting are limited. Here we describe the self-assembly of two oppositely charged tetrapeptides yielding highly disparate nanostructures of fibrillar and spherical assemblies. Upon mixing at different ratios, the disparate nanostructure of the parent peptides remain. Interestingly, while the assemblies appear self-sorted, surface-mediated interactions between spherical and fibrous assemblies translate to increased mechanical properties through enhanced fiber bundling. Moreover, the observed self-sorting is a thermodynamic product and not a result of kinetically trapped pre-existing structures. Taken together, and with the benefit of disparate nanostructures in the parent peptides, we have shown in our system experimental evidence for electrostatic-driven self-sorting in oligopeptide self-assembly.


Assuntos
Nanoestruturas/química , Oligopeptídeos/química , Eletricidade Estática , Termodinâmica , Nanoestruturas/ultraestrutura
10.
Adv Healthc Mater ; 8(12): e1801466, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30605265

RESUMO

The controlled delivery of therapeutics in a manner responsive to physiological indicators has promise in realizing new therapeutic approaches to combat disease. This approach is especially relevant in the context of diabetes. Natural fluctuations in blood glucose seen in the healthy state, complete with peaks and troughs, are poorly regulated as a result of detrimental production or ineffective signaling of the insulin hormone. While several manifestations of diabetes are treated with regularly administered exogenous insulin, the present standard of care results in suboptimal glycemic management that poorly recreates natural hormone control, leading to long-term instability and a significantly increased risk for secondary health complications. New synthetic technologies that make insulin available only when needed, and at the exact dose required, have been explored under the broad vision of realizing a "fully synthetic pancreas." Yet, many challenges remain to realizing a technology that is appropriately responsive, safe, and well integrated into a manageable routine. Herein, many of the approaches explored thus far to sense physiological blood glucose and elicit response through the release of therapeutic insulin are summarized. The approaches point to a new, autonomous approach to managing diabetes with biomimetic therapy.


Assuntos
Biomimética , Glucose/farmacologia , Insulina/uso terapêutico , Animais , Técnicas Biossensoriais , Humanos , Engenharia de Proteínas
11.
Soft Matter ; 14(45): 9168-9174, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30398280

RESUMO

The phenomenon of self-assembly in short peptides (2-4 amino acids) has been a source of curiosity, in part for its role in helping to better understand and predict how minimal sequences within proteins might contribute to the formation of larger structures or aggregates. Building on previous work in this field, here we investigate a family of amphiphilic tripeptides for their self-assembly and hydrogel formation. From a parent peptide, Ac-FID-NH2, which was previously shown to self-assemble into high aspect-ratio filaments and form hydrogels, we explored the significance of structural features or sequence variations on the observed self-assembly. This process entailed substituting key aromatic residues, altering the electronics of these aromatic drivers of assembly, and screening tripeptide constitutional isomers. This work more clearly elucidates the mechanisms and design parameters that govern the creation of materials from short peptide building blocks, as well as offering greater insight into the interactions between minimal segments of proteins that underlie their structure and aggregation.


Assuntos
Elétrons , Interações Hidrofóbicas e Hidrofílicas , Oligopeptídeos/química , Ácidos Carboxílicos/química , Reologia
12.
Adv Drug Deliv Rev ; 127: 185-207, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29128515

RESUMO

Self-assembly is a powerful tool to create functional materials. A specific application for which self-assembled materials are ideally suited is in creating injectable biomaterials. Contrasting with traditional biomaterials that are implanted through surgical means, injecting biomaterials through the skin offers numerous advantages, expanding the scope and impact for biomaterials in medicine. In particular, self-assembled biomaterials prepared from molecular or colloidal interactions have been frequently explored. The strategies to create these materials are varied, taking advantage of engineered oligopeptides, proteins, and nanoparticles as well as affinity-mediated crosslinking of synthetic precursors. Self-assembled materials typically facilitate injectability through two different mechanisms: i) in situ self-assembly, whereby materials would be administered in a monomeric or oligomeric form and self-assemble in response to some physiologic stimulus, or ii) self-assembled materials that, by virtue of their dynamic, non-covalent interactions, shear-thin to facilitate flow within a syringe and subsequently self-heal into its reassembled material form at the injection site. Indeed, many classes of materials are capable of being injected using a combination of these two mechanisms. Particular utility has been noted for self-assembled biomaterials in the context of tissue engineering, regenerative medicine, drug delivery, and immunoengineering. Given the controlled and multifunctional nature of many self-assembled materials demonstrated to date, we project a future where injectable self-assembled biomaterials afford improved practice in advancing healthcare.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/síntese química , Sistemas de Liberação de Medicamentos , Injeções , Materiais Biocompatíveis/química , Coloides/administração & dosagem , Coloides/síntese química , Coloides/química , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/química , Oligopeptídeos/administração & dosagem , Oligopeptídeos/síntese química , Oligopeptídeos/química , Proteínas/administração & dosagem , Proteínas/síntese química , Proteínas/química
13.
Biomater Sci ; 5(8): 1526-1530, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28518205

RESUMO

Supramolecular chemistry enables the creation of a diversity of nanostructures and materials. Many of these have been explored for applications as biomaterials and therapeutics. Among them, self-assembling peptides have been broadly applied. The structural diversity afforded from the library of amino acid building blocks has enabled control of emergent properties across length-scales. Here, we report on a family of amphiphilic tripeptides with sequence-controlled nanostructure. By altering one amino acid in these peptides, we can produce a diversity of nanostructures with different aspect-ratio and geometry. Peptides that produce high aspect-ratio structures can physically entangle to form hydrogels, which support cell viability in culture. Importantly, in comparison to many other short self-assembling peptide biomaterials, those reported here form filamentous nanostructures in the absence of typical secondary structures (i.e., ß-sheet). Thus, we have illustrated a facile way to obtain versatile biomaterials with different nanostructural morphology from short and defined peptide sequences.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas/química , Oligopeptídeos/química , Células 3T3 , Sequência de Aminoácidos , Animais , Camundongos , Conformação Proteica em Folha beta
14.
Epilepsy Behav ; 65: 42-48, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27866083

RESUMO

OBJECTIVE: The neurobiological factors underlying a predisposition towards developing epilepsy and its common behavioral comorbidities are poorly understood. FAST rats are a strain that has been selectively bred for enhanced vulnerability to kindling, while the SLOW strain has been bred to be resistant to kindling. FAST rats also exhibit behavioral traits reminiscent of those observed in neurodevelopmental disorders (autism spectrum disorder (ASD)/attention-deficit/hyperactivity disorder (ADHD)) commonly comorbid with epilepsy. In this study, we aimed to investigate neuroanatomical differences between these strains that may be associated with a differential vulnerability towards these interrelated disorders. METHODS: Ex vivo high-resolution magnetic resonance imaging on adult male FAST and SLOW rat brains was performed to identify morphological differences in regions of interest between the two strains. Behavioral examination using open-field, water consumption, and restraint tests was also conducted on a subgroup of these rats to document their differential ASD/ADHD-like behavior phenotype. Using optical stereological methods, the volume of cerebellar granule, white matter, and molecular layer and number of Purkinje cells were compared in a separate cohort of adult FAST and SLOW rats. RESULTS: Behavioral testing demonstrated hyperactivity, impulsivity, and polydipsia in FAST versus SLOW rats, consistent with an ASD/ADHD-like phenotype. Magnetic resonance imaging analysis identified brain structural differences in FAST compared with SLOW rats, including increased volume of the cerebrum, corpus callosum, third ventricle, and posterior inferior cerebellum, while decreased volume of the anterior cerebellar vermis. Stereological measurements on histological slices indicated significantly larger white matter layer volume, reduced number of Purkinje cells, and smaller molecular layer volume in the cerebellum in FAST versus SLOW rats. SIGNIFICANCE: These findings provide evidence of structural differences between the brains of FAST and SLOW rats that may be mechanistically related to their differential vulnerability to kindling and associated comorbid ASD/ADHD-like behaviors.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Ingestão de Líquidos/genética , Comportamento Impulsivo/fisiologia , Excitação Neurológica/patologia , Animais , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Encéfalo/patologia , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Epilepsia/psicologia , Masculino , Memória/fisiologia , Ratos , Ratos Wistar , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA