RESUMO
Unraveling the nature of adsorbed olefins in zeolites is crucial to understand numerous zeolite-catalyzed processes. A well-grounded theoretical description critically depends on both an accurate determination of the potential energy surface (PES) and a reliable account of entropic effects at operating conditions. Herein, we propose a transfer learning approach to perform random phase approximation (RPA) quality enhanced sampling molecular dynamics simulations, thereby approaching chemical accuracy on both the determination and exploration of the PES. The proposed methodology is used to investigate isobutene adsorption in H-SSZ-13 as prototypical system to estimate the relative stability of physisorbed olefins, carbenium ions and surface alkoxide species (SAS) in Brönsted-acidic zeolites. We show that the tert-butyl carbenium ion formation is highly endothermic and no entropic stabilization is observed compared to the physisorbed complex within H-SSZ-13. Hence, its predicted concentration and lifetime are negligible, making a direct experimental observation unlikely. Yet, it remains a shallow minimum on the free energy surface over the whole considered temperature range (273--873 K), being therefore a short-lived reaction intermediate rather than a transition state species.
RESUMO
Soft porous crystals have the ability to undergo large structural transformations upon exposure to external stimuli while maintaining their long-range structural order, and the size of the crystal plays an important role in this flexible behavior. Computational modeling has the potential to unravel mechanistic details of these phase transitions, provided that the models are representative for experimental crystal sizes and allow for spatially disordered phenomena to occur. Here, we take a major step forward and enable simulations of metal-organic frameworks containing more than a million atoms. This is achieved by exploiting the massive parallelism of state-of-the-art GPUs using the OpenMM software package, for which we developed a new pressure control algorithm that allows for fully anisotropic unit cell fluctuations. As a proof of concept, we study the transition mechanism in MIL-53(Al) under various external pressures. In the lower pressure regime, a layer-by-layer mechanism is observed, while at higher pressures, the transition is initiated at discrete nucleation points and temporarily induces various domains in both the open and closed pore phases. The presented workflow opens the possibility to deduce transition mechanism diagrams for soft porous crystals in terms of the crystal size and the strength of the external stimulus.