Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Intensive Care Med Exp ; 3(1): 52, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26215816

RESUMO

BACKGROUND: Survivors of critical illness are at increased risk of fractures. This may be due to increased osteoclast formation during critical illness, leading to trabecular bone loss. Such bone loss has also been observed in Paget's disease, and has been related to deficient autophagy. Deficient autophagy has also been documented in vital organs and skeletal muscle of critically ill patients. The objective of this study was to investigate whether deficient autophagy can be linked to critical illness-induced bone loss. METHODS: Osteoclasts grown in vitro and their precursor cells isolated from peripheral blood of critically ill patients and from matched healthy volunteers were analysed for the expression of autophagy genes (SQSTM1, Atg3 and Atg7), and proteins (p62, Atg-5, and microtubule-associated protein light chain 3-II (LC3-II)) and for autophagy and epigenetic signalling factors via PCR arrays and were treated with the autophagy inducer rapamycin. The effect of rapamycin was also investigated at the tissue level in an in vivo rabbit model of critical illness. RESULTS: Many more osteoclasts formed in vitro from the blood precursor cells isolated from critically ill patients, which accumulated p62, and displayed reduced expression of Atg5, Atg7, and LC3-II compared to healthy controls, suggesting deficient autophagy, whilst addition of rapamycin reduced osteoclast formation. PCR arrays revealed a down-regulation of histone methyltransferases coupled with an up-regulation of negative regulators of autophagy. Critically ill rabbits displayed a reduction in trabecular and cortical bone, which was rescued with rapamycin. CONCLUSIONS: Deficient autophagy in osteoclasts and their blood precursor cells at least partially explained aberrant osteoclast formation during critical illness and was linked to global histone hypomethylation. Treatment with the autophagy activator Rapamycin reduced patient osteoclast formation in vitro and reduced the amount of bone loss in critically ill rabbits in vivo. These findings may help to develop novel therapeutic targets to prevent critical illness-induced bone loss.

2.
J Bone Miner Res ; 27(7): 1541-52, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22461003

RESUMO

Critically ill patients are at increased risk of fractures during rehabilitation, and can experience impaired healing of traumatic and surgical bone fractures. In addition, markers of bone resorption are markedly increased in critically ill patients, while markers of bone formation are decreased. In the current study, we have directly investigated the effect of critical illness on bone metabolism and repair. In a human in vitro model of critical illness, Fluorescence-activated cell sorting (FACS) analysis revealed an increase in circulating CD14+/CD11b+ osteoclast precursors in critically ill patient peripheral blood compared to healthy controls. In addition, the formation of osteoclasts was increased in patient peripheral blood mononuclear cell (PBMC) cultures compared to healthy controls, both in the presence and absence of osteoclastogenic factors receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Culturing PBMCs with 10% critically ill patient serum further increased osteoclast formation and activity in patient PBMCs only, and neutralization studies revealed that immunoglobulin G (IgG) antibody signaling through the immunoreceptor Fc receptor common γ chain III (FcRγIII) played an important role. When analyzing bone formation, no differences in osteogenic differentiation were observed using human periosteal-derived cells (hPDCs) treated with patient serum in vitro, but a decrease in the expression of vascular endothelial growth factor receptor 1 (VEGF-R1) suggested impaired vascularization. This was confirmed using serum-treated hPDCs implanted onto calcium phosphate scaffolds in a murine in vivo model of bone formation, where decreased vascularization and increased osteoclast activity led to a decrease in bone formation in scaffolds with patient serum-treated hPDCs. Together, these findings may help to define novel therapeutic targets to prevent bone loss and optimize fracture healing in critically ill patients.


Assuntos
Osso e Ossos/patologia , Neovascularização Patológica , Osteoclastos/citologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Doenças Ósseas/complicações , Osso e Ossos/metabolismo , Estado Terminal , Feminino , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica , Humanos , Imunoglobulina G/química , Leucócitos Mononucleares/citologia , Masculino , Pessoa de Meia-Idade , Osteogênese , Periósteo/citologia , Receptores de IgG/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA