Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Br J Ophthalmol ; 100(12): 1742-1746, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27688592

RESUMO

PURPOSE: Retinal vein occlusions (RVO) are a major cause of vision loss in people aged 50 years and older. Current therapeutic options limit the consequences of RVO but do not eliminate the cause. Cannulation of the involved vessel and removal of the clot may provide a more permanent solution with a less demanding follow-up. However, cannulation of smaller retinal veins remains challenging. This paper explores the use of ocriplasmin (recombinant plasmin without its kringles) to clear RVO, using a robotic micromanipulator. METHODS: Branch RVO were induced in a porcine model with rose bengal followed by 532 nm endolaser to the superior venous branch of the optic nerve. The vein was cannulated proximal to the occlusion or beyond the first branching vessel from the obstruction. The vein was infused with a physiologic citric acid buffer solution (CAM) or CAM/ocriplasmin. The time of cannulation, number of attempts, and the ability to release the thrombus were recorded. RESULTS: Cannulation and infusion was possible in all the cases. The use of a micromanipulator allowed for a consistent cannulation of the retinal vein and positional stability allowed the vein to remain cannulated for up to 20 min. In none of the attempts (5/5) with CAM did the thrombus dissolve, despite repeat infusion/relaxation cycles. In 7/7 injections of CAM/ocriplasmin near to the point of obstruction, the clot started to dissolve within a few minutes of injection. An infusion, attempted beyond the first venous branch point proximal to the clot, was unsuccessful in 2/3 attempts. CONCLUSIONS: Ocriplasmin is effective in resolving RVO if injected close to the site of occlusion with the use of a micromanipulator.


Assuntos
Fibrinolisina/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Oclusão da Veia Retiniana/tratamento farmacológico , Animais , Modelos Animais de Doenças , Angiofluoresceinografia , Fundo de Olho , Injeções Intravenosas , Veia Retiniana , Oclusão da Veia Retiniana/diagnóstico , Robótica/métodos , Suínos
2.
PLoS One ; 11(9): e0162037, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27676261

RESUMO

PURPOSE: To develop a methodology for cannulating porcine retinal venules using a robotic assistive arm after inducing a retinal vein occlusion using the photosensitizer rose bengal. METHODOLOGY: Retinal vein occlusions proximal to the first vascular branch point were induced following intravenous injection of rose bengal by exposure to 532nm laser light delivered by slit-lamp or endolaser probe. Retinal veins were cannulated by positioning a glass catheter tip using a robotically controlled micromanipulator above venules with an outer diameter of 80µm or more and performing a preset piercing maneuver, controlled robotically. The ability of a balanced salt (BSS) solution to remove an occlusion by repeat distention of the retinal vein was also assessed. RESULTS: Cannulation using the preset piercing program was successful in 9 of 9 eyes. Piercing using the micromanipulator under manual control was successful in only 24 of 52 attempts, with several attempts leading to double piercing. The best location for cannulation was directly proximal to the occlusion. Infusion of BSS did not result in the resolution of the occlusion. CONCLUSION: Cannulation of venules using a robotic microassistive arm can be achieved with consistency, provided the piercing is robotically driven. The model appears robust enough to allow testing of therapeutic strategies aimed at eliminating a retinal vein thrombus and its evolution over time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA