RESUMO
The fabrication of a Fe-based coated conductor (CC) becomes possible when Fe(Se,Te) is grown as an epitaxial film on a metallic oriented substrate. Thanks to the material's low structural anisotropy, less strict requirements on the template microstructure allow for the design of a simplified CC architecture with respect to the REBCO multi-layered layout. This design, though, still requires a buffer layer to promote the oriented growth of the superconducting film and avoid diffusion from the metallic template. In this work, Fe(Se,Te) films are grown on chemically-deposited, CeO2-based buffer layers via pulsed laser deposition, and excellent properties are obtained when a Fe(Se,Te) seed layer is used. Among all the employed characterization techniques, transmission electron microscopy proved essential to determine the actual effect of the seed layer on the final film properties. Also, systematic investigation of the full current transport properties J(θ, H, T) is carried out: Fe(Se,Te) samples are obtained with sharp superconducting transitions around 16 K and critical current densities exceeding 1 MA cm-2 at 4.2 K in self-field. The in-field and angular behavior of the sample are in line with data from the literature. These results are the demonstration of the feasibility of a Fe-based CC, with all the relative advantages concerning process simplification and cost reduction.
RESUMO
PURPOSE: In order to translate the FLASH effect in clinical use and to treat deep tumors, Very High Electron Energy irradiations could represent a valid technique. Here, we address the main issues in the design of a VHEE FLASH machine. We present preliminary results for a compact C-band system aiming to reach a high accelerating gradient and high current necessary to deliver a Ultra High Dose Rate with a beam pulse duration of 3µs. METHODS: The proposed system is composed by low energy high current injector linac followed by a high acceleration gradient structure able to reach 60-160 MeV energy range. To obtain the maximum energy, an energy pulse compressor options is considered. CST code was used to define the specifications RF parameters of the linac. To optimize the accelerated current and therefore the delivered dose, beam dynamics simulations was performed using TSTEP and ASTRA codes. RESULTS: The VHEE parameters Linac suitable to satisfy FLASH criteria were simulated. Preliminary results allow to obtain a maximum energy of 160 MeV, with a peak current of 200 mA, which corresponds to a charge of 600 nC. CONCLUSIONS: A promising preliminary design of VHEE linac for FLASH RT has been performed. Supplementary studies are on going to complete the characterization of the machine and to manufacture and test the RF prototypes.
Assuntos
Aceleradores de PartículasRESUMO
Plasma wakefield acceleration, either driven by ultra-short laser pulses or electron bunches, represents one of the most promising techniques able to overcome the limits of conventional RF technology and allows the development of compact accelerators. In the particle beam-driven scenario, ultra-short bunches with tiny spot sizes are required to enhance the accelerating gradient and preserve the emittance and energy spread of the accelerated bunch. To achieve such tight transverse beam sizes, a focusing system with short focal length is mandatory. Here we discuss the development of a compact and tunable system consisting of three small-bore permanent-magnet quadrupoles with 520 T/m field gradient. The device has been designed in view of the plasma acceleration experiments planned at the SPARC_LAB test-facility. Being the field gradient fixed, the focusing is adjusted by tuning the relative position of the three magnets with nanometer resolution. Details about its magnetic design, beam-dynamics simulations, and preliminary results are examined in the paper.
RESUMO
The growth of epitaxial {001}<100> SrTiO3 (STO) on low-cost cube-textured Cu-based clad substrate at low temperature was carried out by means of pulsed laser deposition (PLD). STO film was deposited in one step under a reducing atmosphere (5% H2 and 95% Ar mixture) to prevent the oxidation of the metal surface. The optimization of PLD parameters leads to a sharpest biaxial texture at a temperature as low as 500 °C and a thickness of 500 nm with a (100) STO layer. The upper limit of highly textured STO thickness was also investigated. The maximum thickness which retains the best quality {001}<100> texture is 800 nm, since the texture is preserved not only through the layer but also on the surface. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurements showed that STO films are continuous, dense, and smooth with very low roughness (between 5 and 7 nm). This paper describes the development of STO layer by means of PLD in absence of oxygen throughout the process, suggesting an alternative and effective method for growing highly {001}<100> textured STO layer on low-cost metal substrates.