Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 46(7): 4763-4779, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38265905

RESUMO

Meta-learning empowers learning systems with the ability to acquire knowledge from multiple tasks, enabling faster adaptation and generalization to new tasks. This review provides a comprehensive technical overview of meta-learning, emphasizing its importance in real-world applications where data may be scarce or expensive to obtain. The article covers the state-of-the-art meta-learning approaches and explores the relationship between meta-learning and multi-task learning, transfer learning, domain adaptation and generalization, self-supervised learning, personalized federated learning, and continual learning. By highlighting the synergies between these topics and the field of meta-learning, the article demonstrates how advancements in one area can benefit the field as a whole, while avoiding unnecessary duplication of efforts. Additionally, the article delves into advanced meta-learning topics such as learning from complex multi-modal task distributions, unsupervised meta-learning, learning to efficiently adapt to data distribution shifts, and continual meta-learning. Lastly, the article highlights open problems and challenges for future research in the field. By synthesizing the latest research developments, this article provides a thorough understanding of meta-learning and its potential impact on various machine learning applications. We believe that this technical overview will contribute to the advancement of meta-learning and its practical implications in addressing real-world problems.

2.
Sensors (Basel) ; 23(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36850728

RESUMO

Cardiovascular diseases (CVD) represent a serious health problem worldwide, of which atrial fibrillation (AF) is one of the most common conditions. Early and timely diagnosis of CVD is essential for successful treatment. When implemented in the healthcare system this can ease the existing socio-economic burden on health institutions and government. Therefore, developing technologies and tools to diagnose CVD in a timely way and detect AF is an important research topic. ECG monitoring patches allowing ambulatory patient monitoring over several days represent a novel technology, while we witness a significant proliferation of ECG monitoring patches on the market and in the research labs, their performance over a long period of time is not fully characterized. This paper analyzes the signal quality of ECG signals obtained using a single-lead ECG patch featuring self-adhesive dry electrode technology collected from six cardiac patients for 5 days. In particular, we provide insights into signal quality degradation over time, while changes in the average ECG quality per day were present, these changes were not statistically significant. It was observed that the quality was higher during the nights, confirming the link with motion artifacts. These results can improve CVD diagnosis and AF detection in real-world scenarios.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico , Artefatos , Eletrocardiografia , Eletrodos , Monitorização Ambulatorial
3.
Sensors (Basel) ; 22(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35808421

RESUMO

Nowadays, even with all the tremendous advances in medicine and health protocols, cardiovascular diseases (CVD) continue to be one of the major causes of death. In the present work, we focus on a specific abnormality: ST-segment deviation, which occurs regularly in high-performance athletes and elderly people, serving as a myocardial infarction (MI) indicator. It is usually diagnosed manually by experts, through visual interpretation of the printed electrocardiography (ECG) signal. We propose a methodology to detect ST-segment deviation and quantify its scale up to 1 mV by extracting statistical, point-to-point beat characteristics and signal quality indexes (SQIs) from single-lead ECG. We do so by applying automated machine learning methods to find the best hyperparameter configuration for classification and regression models. For validation of our method, we use the ST-T database from Physionet; the results show that our method obtains 98.30% accuracy in the case of a multiclass problem and 99.87% accuracy in the case of binarization.


Assuntos
Eletrocardiografia , Infarto do Miocárdio , Idoso , Humanos , Infarto do Miocárdio/diagnóstico , Fatores de Tempo
4.
User Model User-adapt Interact ; 32(3): 389-415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669126

RESUMO

Psychological theories of habit posit that when a strong habit is formed through behavioral repetition, it can trigger behavior automatically in the same environment. Given the reciprocal relationship between habit and behavior, changing lifestyle behaviors is largely a task of breaking old habits and creating new and healthy ones. Thus, representing users' habit strengths can be very useful for behavior change support systems, for example, to predict behavior or to decide when an intervention reaches its intended effect. However, habit strength is not directly observable and existing self-report measures are taxing for users. In this paper, building on recent computational models of habit formation, we propose a method to enable intelligent systems to compute habit strength based on observable behavior. The hypothesized advantage of using computed habit strength for behavior prediction was tested using data from two intervention studies on dental behavior change ( N = 36 and N = 75 ), where we instructed participants to brush their teeth twice a day for three weeks and monitored their behaviors using accelerometers. The results showed that for the task of predicting future brushing behavior, the theory-based model that computed habit strength achieved an accuracy of 68.6% (Study 1) and 76.1% (Study 2), which outperformed the model that relied on self-reported behavioral determinants but showed no advantage over models that relied on past behavior. We discuss the implications of our results for research on behavior change support systems and habit formation.

5.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34845013

RESUMO

Almost all machine learning (ML) is based on representing examples using intrinsic features. When there are multiple related ML problems (tasks), it is possible to transform these features into extrinsic features by first training ML models on other tasks and letting them each make predictions for each example of the new task, yielding a novel representation. We call this transformational ML (TML). TML is very closely related to, and synergistic with, transfer learning, multitask learning, and stacking. TML is applicable to improving any nonlinear ML method. We tested TML using the most important classes of nonlinear ML: random forests, gradient boosting machines, support vector machines, k-nearest neighbors, and neural networks. To ensure the generality and robustness of the evaluation, we utilized thousands of ML problems from three scientific domains: drug design, predicting gene expression, and ML algorithm selection. We found that TML significantly improved the predictive performance of all the ML methods in all the domains (4 to 50% average improvements) and that TML features generally outperformed intrinsic features. Use of TML also enhances scientific understanding through explainable ML. In drug design, we found that TML provided insight into drug target specificity, the relationships between drugs, and the relationships between target proteins. TML leads to an ecosystem-based approach to ML, where new tasks, examples, predictions, and so on synergistically interact to improve performance. To contribute to this ecosystem, all our data, code, and our ∼50,000 ML models have been fully annotated with metadata, linked, and openly published using Findability, Accessibility, Interoperability, and Reusability principles (∼100 Gbytes).

6.
IEEE Trans Pattern Anal Mach Intell ; 43(9): 3067-3078, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33651683

RESUMO

Automated Machine Learning (AutoML) systems have been shown to efficiently build good models for new datasets. However, it is often not clear how well they can adapt when the data evolves over time. The main goal of this study is to understand the effect of concept drift on the performance of AutoML methods, and which adaptation strategies can be employed to make them more robust to changes in the underlying data. To that end, we propose 6 concept drift adaptation strategies and evaluate their effectiveness on a variety of AutoML approaches for building machine learning pipelines, including Bayesian optimization, genetic programming, and random search with automated stacking. These are evaluated empirically on real-world and synthetic data streams with different types of concept drift. Based on this analysis, we propose ways to develop more sophisticated and robust AutoML techniques.

7.
J Cheminform ; 11(1): 68, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33430958

RESUMO

The goal of quantitative structure activity relationship (QSAR) learning is to learn a function that, given the structure of a small molecule (a potential drug), outputs the predicted activity of the compound. We employed multi-task learning (MTL) to exploit commonalities in drug targets and assays. We used datasets containing curated records about the activity of specific compounds on drug targets provided by ChEMBL. Totally, 1091 assays have been analysed. As a baseline, a single task learning approach that trains random forest to predict drug activity for each drug target individually was considered. We then carried out feature-based and instance-based MTL to predict drug activities. We introduced a natural metric of evolutionary distance between drug targets as a measure of tasks relatedness. Instance-based MTL significantly outperformed both, feature-based MTL and the base learner, on 741 drug targets out of 1091. Feature-based MTL won on 179 occasions and the base learner performed best on 171 drug targets. We conclude that MTL QSAR is improved by incorporating the evolutionary distance between targets. These results indicate that QSAR learning can be performed effectively, even if little data is available for specific drug targets, by leveraging what is known about similar drug targets.

8.
Mach Learn ; 107(1): 285-311, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31997851

RESUMO

We investigate the learning of quantitative structure activity relationships (QSARs) as a case-study of meta-learning. This application area is of the highest societal importance, as it is a key step in the development of new medicines. The standard QSAR learning problem is: given a target (usually a protein) and a set of chemical compounds (small molecules) with associated bioactivities (e.g. inhibition of the target), learn a predictive mapping from molecular representation to activity. Although almost every type of machine learning method has been applied to QSAR learning there is no agreed single best way of learning QSARs, and therefore the problem area is well-suited to meta-learning. We first carried out the most comprehensive ever comparison of machine learning methods for QSAR learning: 18 regression methods, 3 molecular representations, applied to more than 2700 QSAR problems. (These results have been made publicly available on OpenML and represent a valuable resource for testing novel meta-learning methods.) We then investigated the utility of algorithm selection for QSAR problems. We found that this meta-learning approach outperformed the best individual QSAR learning method (random forests using a molecular fingerprint representation) by up to 13%, on average. We conclude that meta-learning outperforms base-learning methods for QSAR learning, and as this investigation is one of the most extensive ever comparisons of base and meta-learning methods ever made, it provides evidence for the general effectiveness of meta-learning over base-learning.

9.
Physiol Meas ; 37(8): 1204-16, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27454128

RESUMO

In this paper, we propose an algorithm that classifies whether a generated cardiac arrhythmia alarm is true or false. The large number of false alarms in intensive care is a severe issue. The noise peaks caused by alarms can be high and in a noisy environment nurses can experience stress and fatigue. In addition, patient safety is compromised because reaction time of the caregivers to true alarms is reduced. The data for the algorithm development consisted of records of electrocardiogram (ECG), arterial blood pressure, and photoplethysmogram signals in which an alarm for either asystole, extreme bradycardia, extreme tachycardia, ventricular fibrillation or flutter, or ventricular tachycardia occurs. First, heart beats are extracted from every signal. Next, the algorithm selects the most reliable signal pair from the available signals by comparing how well the detected beats match between different signals based on [Formula: see text]-score and selecting the best match. From the selected signal pair, arrhythmia specific features, such as heart rate features and signal purity index are computed for the alarm classification. The classification is performed with five separate Random Forest models. In addition, information on the local noise level of the selected ECG lead is added to the classification. The algorithm was trained and evaluated with the PhysioNet/Computing in Cardiology Challenge 2015 data set. In the test set the overall true positive rates were 93 and 95% and true negative rates 80 and 83%, respectively for events with no information and events with information after the alarm. The overall challenge scores were 77.39 and 81.58.


Assuntos
Arritmias Cardíacas/diagnóstico , Alarmes Clínicos , Cuidados Críticos , Aprendizado de Máquina , Processamento de Sinais Assistido por Computador , Arritmias Cardíacas/fisiopatologia , Eletrocardiografia/instrumentação , Reações Falso-Positivas , Frequência Cardíaca , Humanos , Monitorização Fisiológica/instrumentação , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA