Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mater Today Bio ; 26: 101057, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660475

RESUMO

Glioblastoma (GBM) is an aggressive brain tumor, with a highly immunosuppressive tumor immune microenvironment (TIME). In this work, we investigated the use of the STimulator of INterferon Genes (STING) pathway as an effective means to remodel the GBM TIME through the recruitment of both innate and adaptive immune cell populations. Using hyaluronic acid (HA), we developed a novel polymer-drug conjugate of a non-nucleotide STING agonist (MSA2), called HA-MSA2 for the in situ treatment of GBM. In JAWSII cells, HA-MSA2 exerted a greater increase of STING signaling and upregulation of STING-related downstream cyto-/chemokines in immune cells than the free drug. HA-MSA2 also elicited cancer cell-intrinsic immunostimulatory gene expression and promoted immunogenic cell death of GBM cells. In the SB28 GBM model, local delivery of HA-MSA2 induced a delay in tumor growth and a significant extension of survival. The analysis of the TIME showed a profound shift in the GBM immune landscape after HA-MSA2 treatment, with higher infiltration by innate and adaptive immune cells including dendritic, natural killer (NK) and CD8 T cell populations. The therapeutic potential of this novel polymer conjugate warrants further investigation, particularly with other chemo-immunotherapeutics or cancer vaccines as a promising combinatorial therapeutic approach.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38366115

RESUMO

Multiple sclerosis (MS) is a demyelinating and inflammatory disease of the central nervous system (CNS) in need of a curative treatment. MS research has recently focused on the development of pro-remyelinating treatments and neuroprotective therapies. Here, we aimed at favoring remyelination and reducing neuro-inflammation in a cuprizone mouse model of brain demyelination using nanomedicines. We have selected lipid nanocapsules (LNC) coated with the cell-penetrating peptide transactivator of translation (TAT), loaded with either a pro-remyelinating compound, calcitriol (Cal-LNC TAT), or an anti-inflammatory bioactive lipid, prostaglandin D2-glycerol ester (PGD2-G) (PGD2-G-LNC TAT). Following the characterization of these formulations, we showed that Cal-LNC TAT in combination with PGD2-G-LNC TAT increased the mRNA expression of oligodendrocyte differentiation markers both in the CG-4 cell line and in primary mixed glial cell (MGC) cultures. However, while the combination of Cal-LNC TAT and PGD2-G-LNC TAT showed promising results in vitro, no significant impact, in terms of remyelination, astrogliosis, and microgliosis, was observed in vivo in the corpus callosum of cuprizone-treated mice following intranasal administration. Thus, although calcitriol's beneficial effects have been abundantly described in the literature in the context of MS, here, we show that the different doses of calcitriol tested had a negative impact on the mice well-being and showed no beneficial effect in the cuprizone model in terms of remyelination and neuro-inflammation, alone and when combined with PGD2-G-LNC TAT.

3.
J Am Soc Mass Spectrom ; 34(10): 2259-2268, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37712225

RESUMO

The potential of mass spectrometry imaging, and especially ToF-SIMS 2D and 3D imaging, for submicrometer-scale, label-free molecular localization in biological tissues is undisputable. Nevertheless, sensitivity issues remain, especially when one wants to achieve the best lateral and vertical (nanometer-scale) resolution. In this study, the interest of in situ matrix transfer for tissue analysis with cluster ion beams (Bin+, Arn+) is explored in detail, using a series of six low molecular weight acidic (MALDI) matrices. After estimating the sensitivity enhancements for phosphatidylcholine (PC), an abundant lipid type present in almost any kind of cell membrane, the most promising matrices were softly transferred in situ on mouse brain and human uterine tissue samples using a 10 keV Ar3000+ cluster beam. Signal enhancements up to 1 order of magnitude for intact lipid signals were observed in both tissues under Bi5+ and Ar3000+ bombardment. The main findings of this study lie in the in-depth characterization of uterine tissue samples, the demonstration that the transferred matrices also improve signal efficiency in the negative ion polarity and that they perform as well when using Bin+ and Arn+ primary ions for analysis and imaging.


Assuntos
Imageamento Tridimensional , Espectrometria de Massa de Íon Secundário , Camundongos , Animais , Humanos , Espectrometria de Massa de Íon Secundário/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fosfatidilcolinas , Íons , Encéfalo
4.
Biomedicines ; 11(7)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37509598

RESUMO

BACKGROUND: While the blood-brain barrier (BBB) is often compromised in glioblastoma (GB), the perfusion and consequent delivery of drugs are highly heterogeneous. Moreover, the accessibility of drugs is largely impaired in the margins of the tumor and for infiltrating cells at the origin of tumor recurrence. In this work, we evaluate the value of methods to assess hemodynamic changes induced by a hyperosmolar shock in the core and the margins of a tumor in a GB model. METHODS: Osmotic shock was induced with an intracarotid infusion of a hypertonic solution of mannitol in mice grafted with U87-MG cells. The distribution of fluorescent dye (Evans blue) within the brain was assessed via histology. Dynamic contrast-enhanced (DCE)-MRI with an injection of Gadolinium-DOTA as the contrast agent was also used to evaluate the effect on hemodynamic parameters and the diffusion of the contrast agent outside of the tumor area. RESULTS: The histological study revealed that the fluorescent dye diffused much more largely outside of the tumor area after osmotic shock than in control tumors. However, the study of tumor hemodynamic parameters via DCE-MRI did not reveal any change in the permeability of the BBB, whatever the studied MRI parameter. CONCLUSIONS: The use of hypertonic mannitol infusion seems to be a promising method to increase the delivery of compounds in the margins of GB. Nevertheless, the DCE-MRI analysis method using gadolinium-DOTA as a contrast agent seems of limited value for determining the efficacy of opening the BBB in GB after osmotic shock.

5.
Eur J Pharm Sci ; 189: 106522, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423579

RESUMO

Recombinant human deoxyribonuclease I (rhDNase, Pulmozyme®) is the most frequently used mucolytic agent for the symptomatic treatment of cystic fibrosis (CF) lung disease. Conjugation of rhDNase to polyethylene glycol (PEG) has been shown to greatly prolong its residence time in the lungs and improve its therapeutic efficacy in mice. To present an added value over current rhDNase treatment, PEGylated rhDNase needs to be efficiently and less frequently administrated by aerosolization and possibly at higher concentrations than existing rhDNase. In this study, the effects of PEGylation on the thermodynamic stability of rhDNase was investigated using linear 20 kDa, linear 30 kDa and 2-armed 40 kDa PEGs. The suitability of PEG30-rhDNase to electrohydrodynamic atomization (electrospraying) as well as the feasibility of using two vibrating mesh nebulizers, the optimized eFlow® Technology nebulizer (eFlow) and Innospire Go, at varying protein concentrations were investigated. PEGylation was shown to destabilize rhDNase upon chemical-induced denaturation and ethanol exposure. Yet, PEG30-rhDNase was stable enough to withstand aerosolization stresses using the eFlow and Innospire Go nebulizers even at higher concentrations (5 mg of protein per ml) than conventional rhDNase formulation (1 mg/ml). High aerosol output (up to 1.5 ml per min) and excellent aerosol characteristics (up to 83% fine particle fraction) were achieved while preserving protein integrity and enzymatic activity. This work demonstrates the technical feasibility of PEG-rhDNase nebulization with advanced vibrating membrane nebulizers, encouraging further pharmaceutical and clinical developments of a long-acting PEGylated alternative to rhDNase for treating patients with CF.


Assuntos
Fibrose Cística , Aerossóis e Gotículas Respiratórios , Humanos , Animais , Camundongos , Estudos de Viabilidade , Nebulizadores e Vaporizadores , Administração por Inalação , Fibrose Cística/tratamento farmacológico , Polietilenoglicóis/uso terapêutico
6.
Nanomedicine ; 50: 102681, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37105343

RESUMO

Immunotherapy efficacy as monotherapy is negligible for glioblastoma (GBM). We hypothesized that combining therapeutic vaccination using a plasmid encoding an epitope derived from GBM-associated antigen (pTOP) with local delivery of immunogenic chemotherapy using mitoxantrone-loaded PEGylated PLGA-based nanoparticles (NP-MTX) would improve the survival of GBM-bearing mice by stimulating an antitumor immune response. We first proved that MTX retained its ability to induce cytotoxicity and immunogenic cell death of GBM cells after encapsulation. Intratumoral delivery of MTX or NP-MTX increased the frequency of IFN-γ-secreting CD8 T cells. NP-MTX mixed with free MTX in combination with pTOP DNA vaccine increased the median survival of GL261-bearing mice and increased M1-like macrophages in the brain. The addition of CpG to this combination abolished the survival benefit but led to increased M1 to M2 macrophage ratio and IFN-γ-secreting CD4 T cell frequency. These results highlight the benefits of combination strategies to potentiate immunotherapy and improve GBM outcome.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Vacinas de DNA , Camundongos , Animais , Glioblastoma/metabolismo , Vacinas de DNA/uso terapêutico , Morte Celular Imunogênica , Linhagem Celular Tumoral , Imunoterapia/métodos , Neoplasias Encefálicas/tratamento farmacológico
7.
Drug Deliv Transl Res ; 13(10): 2550-2567, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37040031

RESUMO

Immunotherapy of advanced melanoma has encountered significant hurdles in terms of clinical efficacy. Here, we designed a clinically translatable hyaluronic acid (HA)-based vaccine delivering a combination of major histocompatibility complex (MHC) class I- and class II-restricted melanoma antigens (TRP2 and Gp100, respectively) conjugated to HA. HA-nanovaccine (HA-TRP2-Gp100 conjugate) exhibited tropism in the lymph nodes and promoted stimulation of the immune response (2.3-fold higher than the HA+TRP2+Gp100). HA-nanovaccine significantly delayed the growth of B16F10 melanoma and extended survival in both the prophylactic and therapeutic settings (median survival of 22 and 27, respectively, vs 17 days of the untreated group). Moreover, mice prophylactically treated with the HA-nanovaccine displayed significantly higher CD8+ and CD4+ T-cell/Treg ratios in both the spleen and tumor at day 16, suggesting that the HA-nanovaccine overcame the immunosuppressive tumor microenvironment. Superior infiltration of active CD4+ and CD8+ T cells was observed at the endpoint. This study supports the conclusion that HA potentiates the effect of a combination of MHC I and MHC II antigens via a potent immune response against melanoma.


Assuntos
Ácido Hialurônico , Melanoma , Animais , Camundongos , Melanoma/tratamento farmacológico , Melanoma/prevenção & controle , Linfócitos T CD8-Positivos , Imunização , Imunidade , Microambiente Tumoral
8.
Biomaterials ; 294: 122006, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36701998

RESUMO

The efficacy of standard glioblastoma (GBM) treatments has been limited due to the highly immunosuppressive tumor immune microenvironment, interpatient tumor heterogenicity and anatomical barriers, such as the blood brain barrier. In the present work, we hypothesized that a new local therapy based on the combination of doxorubicin (DOX) as an immunogenic cell death (ICD) inducer and CpG, a Toll-like receptor (TLR)-9 agonist, would act synergistically to eradicate GBM. DOX and CpG were first tested in an orthotopic GL261 GBM model showing enhanced survival. To improve the outcome with a reduced dose, we designed bioresponsive hyaluronic acid (HA)-drug conjugates for effective in situ chemoimmunotherapy. HA was derivatized with CpG. The new HA-CpG conjugate showed high efficacy in re-educating protumoral M2-like microglia into an antitumoral M1-like phenotype, inducing the expression of immune-stimulatory cytokines. DOX was also conjugated to HA. DOX conjugation increased ICD induction in GL261 cells. Finally, a combination of the conjugates was explored in an orthotopic GL261 GBM model. The local delivery of combined HA-DOX + HA-CpG into the tumor mass elicited antitumor CD8+ T cell responses in the brain tumor microenvironment and reduced the infiltration of M2-like tumor-associated macrophages and myeloid-derived suppressor cells. Importantly, the combination of HA-DOX and HA-CpG induced long-term survival in >66% of GBM-bearing animals than other treatments (no long-term survivor observed), demonstrating the benefits of conjugating synergistic drugs to HA nanocarrier. These results emphasize that HA-drug conjugates constitute an effective drug delivery platform for local chemoimmunotherapy against GBM and open new perspectives for the treatment of other brain cancers and brain metastasis.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Ácido Hialurônico/uso terapêutico , Morte Celular Imunogênica , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Imunoterapia/métodos , Imunidade , Microambiente Tumoral
9.
Nanomedicine ; 48: 102633, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36435364

RESUMO

Here, prostaglandin D2-glycerol ester (PGD2-G) was selected to target neuroinflammation. As PGD2-G is reported to have a short plasmatic half-life, we propose to use lipid nanocapsules (LNC) as vehicle to safely transport PGD2-G to the central nervous system (CNS). PGD2-G-loaded LNC (PGD2-G-LNC) reduced pro-inflammatory cytokine expression in activated microglial cells, even so after crossing a primary olfactory cell monolayer. A single nasal administration of PGD2-G-LNC in lipopolysaccharide (LPS)-treated mice reduced pro-inflammatory cytokine expression in the olfactory bulb. Coating LNC's surface with a cell-penetrating peptide, transactivator of transcription (TAT), increased its accumulation in the brain. Although TAT-coated PGD2-G-LNC modestly exerted its anti-inflammatory effect in a mouse model of multiple sclerosis similar to free PGD2-G after nasal administration, TAT-coated LNC surprisingly reduced the expression of pro-inflammatory chemokines in the CNS. These data propose LNC as an interesting drug delivery tool and TAT-coated PGD2-G-LNC remains a good candidate, in need of further work.


Assuntos
Nanocápsulas , Diagnóstico Pré-Implantação , Feminino , Gravidez , Camundongos , Animais , Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/farmacologia , Encéfalo , Citocinas
10.
Pharmaceutics ; 14(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35631612

RESUMO

Combination immunotherapy has emerged as a promising strategy to increase the immune response in glioblastoma (GBM) and overcome the complex immunosuppression occurring in its microenvironment. In this study, we hypothesized that combining DNA vaccines-to stimulate a specific immune response-and dual immune checkpoint blockade (ICB)-to decrease the immunosuppression exerted on T cells-will improve the immune response and the survival in an orthotopic unresectable GL261 model. We first highlighted the influence of the insertion position of a GBM epitope sequence in a plasmid DNA vaccine encoding a vesicular stomatitis virus glycoprotein (VSV-G) (here referred to as pTOP) in the generation of a specific and significant IFN-γ response against the GBM antigen TRP2 by inserting a CD8 epitope sequence in specific permissive sites. Then, we combined the pTOP vaccine with anti-PD-1 and anti-CTLA-4 ICBs. Immune cell analysis revealed an increase in effector T cell to Treg ratios in the spleens and an increase in infiltrated IFN-γ-secreting CD8 T cell frequency in the brains following combination therapy. Even if the survival was not significantly different between dual ICB and combination therapy, we offer a new immunotherapeutic perspective by improving the immune landscape in an orthotopic unresectable GBM model.

11.
Int J Pharm ; 612: 121355, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34883205

RESUMO

Alpha-1 antitrypsin (AAT) is an endogenous inhibitor of serine proteases which, in physiological conditions, neutralizes the excess of neutrophil elastase and other serine proteases in tissues and especially the lungs. Weekly intravenous infusion of plasma-purified human AAT is used to treat AAT deficiency-associated lung disease. However, only 2 % of the AAT dose reach the lungs after intravenous infusion. Inhalation of AAT might offer an alternative route of administration. Yet, the rapid clearance of AAT from the respiratory tract results in high and frequent dosing by inhalation and limited efficacy. In the present study, we produced and characterized in vitro a PEGylated version of AAT which could offer a prolonged body residence time and thereby be useful for augmentation therapy by the intravenous and inhalation routes. Two PEGylation reactions - N-terminal and thiol PEGylation - and three polyethylene glycol (PEG) chains - linear 30 kDa, linear 40 kDa and 2-armed 40 kDa - were used. The yields of mono-PEGylated AAT following purification by anion exchange chromatography were 40-50 % for N-terminal PEGylation and 60-70% for thiol PEGylation. The PEG-AAT conjugates preserved the ability to form a protease-inhibitor complex with neutrophil elastase and proteinase 3 as well as the full inhibitory capacity to neutralize neutrophil elastase activity. These results open up interesting prospects for PEGylated AAT to achieve a prolonged half-life and an improved therapeutic efficacy in vivo.


Assuntos
Deficiência de alfa 1-Antitripsina , Administração por Inalação , Humanos , Pulmão , Neutrófilos , Deficiência de alfa 1-Antitripsina/tratamento farmacológico
12.
Analyst ; 146(21): 6506-6519, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34570146

RESUMO

Sensitivity to molecular ions remains a limiting factor for high resolution imaging mass spectrometry of organic and biological materials. Here, we investigate a variant of matrix-enhanced secondary ion mass spectrometry in which the transfer of matrix molecules to the analyte sample is carried out in situ (in situ ME-SIMS). This approach is therefore compatible with both 2D and 3D imaging by SIMS. In this exploratory study, nanoscale matrix layers were sputter-transferred inside our time-of-flight (ToF)-SIMS to a series of thin films of biomolecules (proteins, sugars, lipids) adsorbed on silicon, and the resulting layers were analyzed and depth-profiled. For this purpose, matrix molecules were desorbed from a coated target (obtained by drop-casting or sublimation) using 10 keV Ar3000+ ion beam sputtering, followed by redeposition on a collector carrying the sample to be analyzed. After evaluating the quality of the transfer of six different matrices on bare Si collectors, α-cyano-4-hydroxycinnamic acid (CHCA) was selected for further experiments. The mass spectra and depth profiles obtained from the organic layer prior to and after the sputter-transfer of CHCA were compared, along with those obtained from regular ME-SIMS samples (dried droplets) and, finally, with MALDI data for the same matrix-analyte combinations. Signal amplification factors were calculated by dividing the integrated molecular intensities obtained with or without matrix transfer. While the amplification factors are between 0.5 and 2 for molecules already detected with high intensities in SIMS, such as cholesterol or human angiotensin, other compounds show very large integrated signal amplification, even above two orders of magnitude. This is the case for D-glucose and cardiolipin, for which the molecular ion intensity is low (or very low) under normal SIMS analysis conditions. For such low ionization probability compounds, the beneficial effect of the matrix is unquestionable. Test experiments on mouse brain tissue sections also indicate signal enhancement with the matrix, especially for high mass lipid ions.


Assuntos
Lipídeos , Espectrometria de Massa de Íon Secundário , Animais , Íons , Camundongos , Silício , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
J Immunother Cancer ; 9(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33795383

RESUMO

BACKGROUND: Strategies to increase nucleic acid vaccine immunogenicity are needed to move towards clinical applications in oncology. In this study, we designed a new generation of DNA vaccines, encoding an engineered vesicular stomatitis virus glycoprotein as a carrier of foreign T cell tumor epitopes (plasmid to deliver T cell epitopes, pTOP). We hypothesized that pTOP could activate a more potent response compared with the traditional DNA-based immunotherapies, due to both the innate immune properties of the viral protein and the specific induction of CD4 and CD8 T cells targeting tumor antigens. This could improve the outcome in different tumor models, especially when the DNA-based immunotherapy is combined with a rational therapeutic strategy. METHODS: The ability of pTOP DNA vaccine to activate a specific CD4 and CD8 response and the antitumor efficacy were tested in a B16F10-OVA melanoma (subcutaneous model) and GL261 glioblastoma (subcutaneous and orthotopic models). RESULTS: In B16F10-OVA melanoma, pTOP promoted immune recognition by adequate processing of both MHC-I and MHC-II epitopes and had a higher antigen-specific cytotoxic T cell (CTL) killing activity. In a GL261 orthotopic glioblastoma, pTOP immunization prior to tumor debulking resulted in 78% durable remission and long-term survival and induced a decrease of the number of immunosuppressive cells and an increase of immunologically active CTLs in the brain. The combination of pTOP with immune checkpoint blockade or with tumor resection improved the survival of mice bearing, a subcutaneous melanoma or an orthotopic glioblastoma, respectively. CONCLUSIONS: In this work, we showed that pTOP plasmids encoding an engineered vesicular stomatitis virus glycoprotein, and containing various foreign T cell tumor epitopes, successfully triggered innate immunity and effectively promoted immune recognition by adequate processing of both MHC-I and MHC-II epitopes. These results highlight the potential of DNA-based immunotherapies coding for viral proteins to induce potent and specific antitumor responses.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Vacinas Anticâncer/farmacologia , Epitopos de Linfócito T/farmacologia , Glioblastoma/tratamento farmacológico , Imunogenicidade da Vacina , Imunoterapia , Glicoproteínas de Membrana/farmacologia , Neoplasias/tratamento farmacológico , Vacinas de DNA/farmacologia , Proteínas do Envelope Viral/farmacologia , Animais , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Terapia Combinada , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Glioblastoma/imunologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade Inata/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
14.
Int J Pharm ; 600: 120504, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33753161

RESUMO

Immunotherapy brings new hope to the fight against lung cancer. General immunostimulatory agents represent an immunotherapy strategy that has demonstrated efficacy with limited toxicity when delivered intratumorally. The goal of this study was to enhance the antitumor efficacy of unmethylated oligodeoxynucleotides containing CpG motifs (CpG) and polyinosinic-polycytidylic acid (poly I:C) double-stranded RNA following their local delivery in lung cancer by encapsulating them in liposomes. Liposomes encapsulation of nucleic acids could increase their uptake by lung phagocytes and thereby the activation of toll-like receptors within endosomes. Liposomes were prepared using a cationic lipid, dioleoyltrimethylammoniumpropane (DOTAP), and dipalmitoylphosphatidylcholine (DPPC), the main phospholipid in lung surfactant. The liposomes permanently entrapped CpG but could not efficiently withhold poly I:C. Both poly I:C and CpG delayed tumor growth in the murine B16F10 model of metastatic lung cancer. However, only CpG increased IFN-γ levels in the lungs. Pulmonary administration of CpG was superior to its intraperitoneal injection to slow the growth of lung metastases and to induce the production of granzyme B, a pro-apoptotic protein, and IFNγ, MIG and RANTES, T helper type 1 cytokines and chemokines, in the lungs. These antitumor activities of CpG were strongly enhanced by CpG encapsulation in DOTAP/DPPC liposomes. Delivery of low CpG doses to the lungs induced increased inflammation markers in the airspaces but the inflammation did not reach the systemic compartment in a significant manner. These data support the use of a delivery carrier to strengthen CpG antitumor activity following its pulmonary delivery in lung cancer.


Assuntos
Lipossomos , Neoplasias Pulmonares , Animais , Modelos Animais de Doenças , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Oligodesoxirribonucleotídeos
15.
Int J Pharm ; 587: 119685, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32712253

RESUMO

There is no treatment for spinal cord injury (SCI) that fully repairs the damages. One strategy is to inject mesenchymal stem cells around the lesion to benefit from their immunomodulatory properties and neuroprotective effect. Our hypothesis was that the combination of dental stem cells from the apical papilla (SCAP) with pharmacologically active microcarriers (PAMs) releasing brain-derived neurotrophic factor (BDNF) would improve rat locomotor function by immunomodulation and neuroprotection. BDNF-PAMs were prepared by solid/oil/water emulsion of poly(L-lactide-co-glycolide) and nanoprecipitated BDNF and subsequent coating with fibronectin. SCAP were then seeded on BDNF-PAMs. SCAP expression of neuronal and immunomodulatory factors was evaluated in vitro. SCAP BDNF-PAMs were injected in a rat spinal cord contusion model and their locomotor function was evaluated by Basso, Beattie, and Bresnahan (BBB) scoring. Impact on inflammation and neuroprotection/axonal growth was evaluated by immunofluorescence. Culture on PAMs induced the overexpression of immunomodulatory molecules and neural/neuronal markers. Injection of SCAP BDNF-PAMs at the lesion site improved rat BBB scoring, reduced the expression of inducible nitric oxide synthase and increased the expression of ßIII tubulin, GAP43, and 5-HT. These results confirm the suitability and versatility of PAMs as combined drug and cell delivery system for regenerative medicine applications but also that BDNF-PAMs potentialize the very promising therapeutic potential of SCAP in the scope of SCI.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Células-Tronco Mesenquimais , Fármacos Neuroprotetores , Traumatismos da Medula Espinal , Animais , Humanos , Neurônios , Ratos , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico
16.
PLoS One ; 14(5): e0217762, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31150505

RESUMO

We aimed to explore whether the combination of intradermal DNA vaccination, to boost immune response against melanoma antigens, and immune checkpoint blockade, to alleviate immunosuppression, improves antitumor effectiveness in a murine B16F10 melanoma tumor model. Compared to single treatments, a combination of intradermal DNA vaccination (ovalbumin or gp100 plasmid adjuvanted with IL12 plasmid) and immune checkpoint CTLA-4/PD-1 blockade resulted in a significant delay in tumor growth and prolonged survival of treated mice. Strong activation of the immune response induced by combined treatment resulted in a significant antigen-specific immune response, with elevated production of antigen-specific IgG antibodies and increased intratumoral CD8+ infiltration. These results indicate a potential application of the combined DNA vaccination and immune checkpoint blockade, specifically, to enhance the efficacy of DNA vaccines and to overcome the resistance to immune checkpoint inhibitors in certain cancer types.


Assuntos
Imunoterapia , Melanoma Experimental/terapia , Vacinas de DNA/farmacologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/farmacologia , Linhagem Celular Tumoral , Terapia Combinada , Humanos , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Vacinação , Vacinas de DNA/imunologia
17.
Mol Pharm ; 16(5): 2048-2059, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30965005

RESUMO

The purpose of this study was to assess whether cationic nanoliposomes could address tumor vaccines to dendritic cells in the lungs in vivo. Nanoliposomes were prepared using a cationic lipid, dimethylaminoethanecarbamoyl-cholesterol (DC-cholesterol) or dioleoyltrimethylammoniumpropane (DOTAP), and dipalmitoylphosphatidylcholine (DPPC), the most abundant phospholipid in lung surfactant. The liposomes presented a size below 175 nm and they effectively entrapped tumor antigens, an oligodeoxynucletotide containing CpG motifs (CpG) and the fluorescent dye calcein used as a tracer. Although the liposomes could permanently entrap a large fraction of the actives, they could not sustain their release in vitro. Liposomes made of DOTAP were safe to respiratory cells in vitro, while liposomes composed of DC-cholesterol were cytotoxic. DOTAP nanoliposomes were mainly taken up by alveolar macrophages following delivery to the lungs in mice. Few dendritic cells took up the liposomes, and interstitial macrophages did not take up liposomal calcein more than they took up soluble calcein. Stimulation of the innate immune system using liposomal CpG strongly enhanced uptake of calcein liposomes by all phagocytes in the lungs. Although a small percentage of dendritic cells took up the nanoliposomes, alveolar macrophages represented a major barrier to dendritic cell access in the lungs.


Assuntos
Ilhas de CpG/imunologia , Células Dendríticas/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/farmacocinética , Pulmão/citologia , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , 1,2-Dipalmitoilfosfatidilcolina/farmacocinética , Adjuvantes Imunológicos/uso terapêutico , Animais , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colesterol/análogos & derivados , Colesterol/farmacocinética , Ácidos Graxos Monoinsaturados/farmacocinética , Feminino , Fluoresceínas/farmacocinética , Corantes Fluorescentes/farmacocinética , Lipopeptídeos , Lipossomos/síntese química , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Antígeno MART-1/farmacologia , Camundongos , Nanopartículas/química , Compostos de Amônio Quaternário/farmacocinética , Distribuição Tecidual , Antígeno gp100 de Melanoma/farmacologia
18.
Sci Rep ; 8(1): 15732, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30356111

RESUMO

DNA vaccination against cancer has become a promising strategy for inducing a specific and long-lasting antitumor immunity. However, DNA vaccines fail to generate potent immune responses when used as a single therapy. To enhance their activity into the tumor, a DNA vaccine against murine P815 mastocytoma was combined with antibodies directed against the immune checkpoints CTLA4 and PD1. The combination of these two strategies delayed tumor growth and enhanced specific antitumor immune cell infiltration in comparison to the corresponding single therapies. The combination also promoted IFNg, IL12 and granzyme B production in the tumor microenvironment and decreased the formation of liver metastasis in a very early phase of tumor development, enabling 90% survival. These results underline the complementarity of DNA vaccination and immune checkpoint blockers in inducing a potent immune response, by exploiting the generation of antigen-specific T cells by the vaccine and the ability of immune checkpoint blockers to enhance T cell activity and infiltration in the tumor. These findings suggest how and why a rational combination therapy can overcome the limits of DNA vaccination but could also allow responses to immune checkpoint blockers in a larger proportion of subjects.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Mastocitoma/terapia , Receptor de Morte Celular Programada 1/imunologia , Vacinas de DNA/uso terapêutico , Animais , Antígeno CTLA-4/imunologia , Vacinas Anticâncer/imunologia , Imunoterapia/métodos , Mastocitoma/patologia , Camundongos , Metástase Neoplásica/prevenção & controle , Taxa de Sobrevida , Resultado do Tratamento , Microambiente Tumoral , Vacinas de DNA/imunologia
19.
Nanoscale ; 10(2): 603-613, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29235598

RESUMO

Nanoparticulate based drug delivery systems have been extensively studied to efficiently encapsulate and deliver peptides orally. However, most of the existing data mainly focus on the nanoparticles as a drug carrier, but the ability of nanoparticles having a biological effect has not been exploited. Herein, we hypothesize that nanostructured lipid carriers (NLCs) could activate the endogenous glucagon-like peptide-1 (GLP-1) secretion and also act as oral delivery systems for GLP-1 analogs (exenatide and liraglutide). NLCs effectively encapsulated the peptides, the majority of which were only released under the intestinal conditions. NLCs, with and without peptide encapsulation, showed effective induction of GLP-1 secretion in vitro from the enteroendocrinal L-cells (GLUTag). NLCs also showed a 2.9-fold increase in the permeability of exenatide across the intestinal cell monolayer. The intestinal administration of the exenatide and liraglutide loaded NLCs did not demonstrate any glucose lowering effect on normal mice. Further, ex vivo studies depicted that the NLCs mainly adhered to the mucus layer. In conclusion, this study demonstrates that NLCs need further optimization to overcome the mucosal barrier in the intestine; nonetheless, this study also presents a promising strategy to use a dual-action drug delivery nanosystem which synergizes its own biological effect and that of the encapsulated drug molecule.


Assuntos
Portadores de Fármacos/química , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Lipídeos/química , Nanoestruturas , Animais , Células CACO-2 , Exenatida/administração & dosagem , Humanos , Jejuno/efeitos dos fármacos , Liraglutida/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos NOD , Tamanho da Partícula , Ratos Sprague-Dawley
20.
Mol Ther Nucleic Acids ; 8: 404-415, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28918040

RESUMO

DNA vaccine can be modified to increase protein production and modulate immune response. To enhance the efficiency of a P815 mastocytoma DNA vaccine, the P1A gene sequence was optimized by substituting specific codons with synonymous ones while modulating the number of CpG motifs. The P815A murine antigen production was increased with codon-optimized plasmids. The number of CpG motifs within the P1A gene sequence modulated the immunogenicity by inducing a local increase in the cytokines involved in innate immunity. After prophylactic immunization with the optimized vaccines, tumor growth was significantly delayed and mice survival was improved. Consistently, a more pronounced intratumoral recruitment of CD8+ T cells and a memory response were observed. Therapeutic vaccination was able to delay tumor growth when the codon-optimized DNA vaccine containing the highest number of CpG motifs was used. Our data demonstrate the therapeutic potential of optimized P1A vaccine against P815 mastocytoma, and they show the dual role played by codon optimization on both protein production and innate immune activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA