Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474943

RESUMO

A passive wireless high-temperature sensor for far-field applications was developed for stable temperature sensing up to 1000 °C. The goal is to leverage the properties of electroceramic materials, including adequate electrical conductivity, high-temperature resilience, and chemical stability in harsh environments. Initial sensors were fabricated using Ag for operation to 600 °C to achieve a baseline understanding of temperature sensing principles using patch antenna designs. Fabrication then followed with higher temperature sensors made from (In, Sn) O2 (ITO) for evaluation up to 1000 °C. A patch antenna was modeled in ANSYS HFSS to operate in a high-frequency region (2.5-3.5 GHz) within a 50 × 50 mm2 confined geometric area using characteristic material properties. The sensor was fabricated on Al2O3 using screen printing methods and then sintered at 700 °C for Ag and 1200 °C for ITO in an ambient atmosphere. Sensors were evaluated at 600 °C for Ag and 1000 °C for ITO and analyzed at set interrogating distances up to 0.75 m using ultra-wideband slot antennas to collect scattering parameters. The sensitivity (average change in resonant frequency with respect to temperature) from 50 to 1000 °C was between 22 and 62 kHz/°C which decreased as interrogating distances reached 0.75 m.

2.
Sensors (Basel) ; 22(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35336333

RESUMO

In this work, an all-ceramic passive wireless inductor-capacitor (LC) resonator was presented for stable temperature sensing up to 1200 °C in air. Instead of using conventional metallic electrodes, the LC resonators are modeled and fabricated with thermally stable and highly electroconductive ceramic oxide. The LC resonator was modeled in ANSYS HFSS to operate in a low-frequency region (50 MHz) within 50 × 50 mm geometry using the actual material properties of the circuit elements. The LC resonator was composed of a parallel plate capacitor coupled with a planar inductor deposited on an Al2O3 substrate using screen-printing, and the ceramic pattern was sintered at 1250 °C for 4 h in an ambient atmosphere. The sensitivity (average change in resonant frequency with respect to temperature) from 200-1200 °C was ~170 kHz/°C. The temperature-dependent electrical conductivity of the tin-doped indium oxide (ITO, 10% SnO2 doping) on the quality factor showed an increase of Qf from 36 to 43 between 200 °C and 1200 °C. The proposed ITO electrodes displayed improved sensitivity and quality factor at elevated temperatures, proving them to be an excellent candidate for temperature sensing in harsh environments. The microstructural analysis of the co-sintered LC resonator was performed using a scanning electron microscope (SEM) which showed that there are no cross-sectional and topographical defects after several thermal treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA