RESUMO
In this review, we present a short overview of the development of sol-gel glasses for application in the field of photonics, with a focus on some of the most interesting results obtained by our group and collaborators in that area. Our main attention is devoted to silicate glasses of different compositions, which are characterized by specific optical and spectroscopic properties for various applications, ranging from luminescent systems to light-confining structures and memristors. In particular, the roles of rare-earth doping, matrix composition, the densification process and the fabrication protocol on the structural, optical and spectroscopic properties of the developed photonic systems are discussed through appropriate examples. Some achievements in the fabrication of oxide sol-gel optical waveguides and of micro- and nanostructures for the confinement of light are also briefly discussed.
RESUMO
Doped semiconductor nanocrystal-based thin films are widely used for many applications, such as screens, electrochromic windows, light emitting diodes, and solar cells. Herein, we have employed spectroscopic ellipsometry to measure and model the complex dielectric response of indium tin oxide films fabricated by nanocrystal deposition and sintering. The films could be modelled as Bruggemann effective media, allowing estimation of the nanoscale interstitial porosity of the structure. The effective dielectric constants show the possibility of tuning the plasma frequency and the epsilon-near zero condition of the film.
RESUMO
Rare earth-activated 1-D photonic crystals were fabricated by RF-sputtering technique. The cavity is constituted by an Er3+-doped SiO2 active layer inserted between two Bragg reflectors consisting of ten pairs of SiO2/TiO2 layers. Scanning electron microscopy is employed to put in evidence the quality of the sample, the homogeneities of the layers thickness and the good adhesion among them. Near infrared transmittance and variable angle reflectance spectra confirm the presence of a stop band from 1500 nm to 2000 nm with a cavity resonance centered at 1749 nm at 0° and a quality factor of 890. The influence of the cavity on the 4I13/2 -->4I15/2 emission band of Er3+ ion is also demonstrated.