RESUMO
Microparasites often exist as a collection of genetic 'clones' within a single host (termed multi-clonal, or complex, infections). Malaria parasites are no exception, with complex infections playing key roles in parasite ecology. Even so, we know little about what factors govern the distribution and abundance of complex infections in natural settings. Utilizing a natural dataset that spans more than 20 years, we examined the effects of drought conditions on infection complexity and prevalence in the lizard malaria parasite Plasmodium mexicanum and its vertebrate host, the western fence lizard, Sceloporus occidentalis. We analyzed data for 14,011 lizards sampled from ten sites over 34 years with an average infection rate of 16.2%. Infection complexity was assessed for 546 infected lizards sampled during the most recent 20 years. Our data illustrate significant, negative effects of drought-like conditions on infection complexity, with infection complexity expected to increase by a factor of 2.27 from the lowest to highest rainfall years. The relationship between rainfall and parasite prevalence is somewhat more ambiguous; when prevalence is modeled over the full range in years, a 50% increase in prevalence is predicted between the lowest and highest rainfall years, but this trend is not apparent or is reversed when data are analyzed over a shorter timeframe. To our knowledge, this is the first reported evidence for drought affecting the abundance of multi-clonal infections in malaria parasites. It is not yet clear what mechanism might connect drought with infection complexity, but the correlation we observed suggests that additional research on how drought influences parasite features like infection complexity, transmission rates and within-host competition may be worthwhile.
Assuntos
Lagartos , Malária , Parasitos , Plasmodium , Animais , Secas , Prevalência , Plasmodium/genética , Malária/epidemiologiaRESUMO
BACKGROUND: Understanding the complex heterogeneity of risk factors that can contribute to an increased risk of malaria at the individual and household level will enable more effective use of control measures. The objective of this study was to understand individual and household factors that influence clinical malaria infection among individuals in the highlands of Western Kenya. METHODS: This was a matched case-control study undertaken in the Western Kenya highlands. Clinical malaria cases were recruited from health facilities and matched to asymptomatic individuals from the community who served as controls. Each participant was screened for malaria using microscopy. Follow-up surveys were conducted with individual households to collect socio-economic data. The houses were also checked using pyrethrum spray catches to collect mosquitoes. RESULTS: A total of 302 malaria cases were matched to 604 controls during the surveillance period. Mosquito densities were similar in the houses of both groups. A greater percentage of people in the control group (64.6%) used insecticide-treated bed nets (ITNs) compared to the families of malaria cases (48.3%). Use of ITNs was associated with lower level of clinical malaria episodes (odds ratio 0.51; 95% CI 0.39-0.68; P < 0.0001). Low income was the most important factor associated with higher malaria infections (adj. OR 4.70). Use of malaria prophylaxis was the most important factor associated with less malaria infections (adj OR 0.36). Mother's (not fathers) employment status (adj OR 0.48) and education level (adj OR 0.54) was important malaria risk factor. Houses with open eaves was an important malaria risk factor (adj OR 1.72). CONCLUSION: The identification of risk factors for clinical malaria infection provides information on the local malaria epidemiology and has the potential to lead to a more effective and targeted use of malaria control measures. These risk factors could be used to assess why some individuals acquire clinical malaria whilst others do not and to inform how intervention could be scaled at the local level.
Assuntos
Habitação/estatística & dados numéricos , Malária/epidemiologia , Adolescente , Adulto , Animais , Estudos de Casos e Controles , Criança , Pré-Escolar , Culicidae/fisiologia , Feminino , Humanos , Lactente , Mosquiteiros Tratados com Inseticida , Quênia/epidemiologia , Modelos Logísticos , Malária/prevenção & controle , Masculino , Controle de Mosquitos/normas , Densidade Demográfica , Fatores de RiscoRESUMO
Antimalarial drug resistance has threatened global malaria control since chloroquine (CQ)-resistant Plasmodium falciparum emerged in Asia in the 1950s. Understanding the impacts of changing antimalarial drug policy on resistance is critical for resistance management. Plasmodium falciparum isolates were collected from 2003 to 2015 in western Kenya and analyzed for genetic markers associated with resistance to CQ (Pfcrt), sulfadoxine-pyrimethamine (SP) (Pfdhfr/Pfdhps), and artemether-lumefantrine (AL) (PfKelch13/Pfmdr1) antimalarials. In addition, household antimalarial drug use surveys were administered. Pfcrt 76T prevalence decreased from 76% to 6% from 2003 to 2015. Pfdhfr/Pfdhps quintuple mutants decreased from 70% in 2003 to 14% in 2008, but increased to near fixation by 2015. SP "super resistant" alleles Pfdhps 581G and 613S/T were not detected in the 2015 samples that were assessed. The Pfmdr1 N86-184F-D1246 haplotype associated with decreased lumefantrine susceptibility increased significantly from 4% in 2005 to 51% in 2015. No PfKelch13 mutations that have been previously associated with artemisinin resistance were detected in the study populations. The increase in Pfdhfr/Pfdhps quintuple mutants that associates with SP resistance may have resulted from the increased usage of SP for intermittent preventative therapy in pregnancy (IPTp) and for malaria treatment in the community. Prevalent Pfdhfr/Pfdhps mutations call for careful monitoring of SP resistance and effectiveness of the current IPTp program in Kenya. In addition, the commonly occurring Pfmdr1 N86-184F-D1246 haplotype associated with increased lumefantrine tolerance calls for surveillance of AL efficacy in Kenya, as well as consideration for a rotating artemisinin-combination therapy regimen.
Assuntos
Antimaláricos/uso terapêutico , Plasmodium falciparum/efeitos dos fármacos , Adolescente , Antimaláricos/administração & dosagem , Criança , Cloroquina/uso terapêutico , Combinação de Medicamentos , Resistência a Medicamentos/genética , Marcadores Genéticos , Haplótipos , Humanos , Quênia , Malária Falciparum/tratamento farmacológico , Mutação , Plasmodium falciparum/genética , Fatores de TempoRESUMO
BACKGROUND: The geographic scale and degree of genetic differentiation for arthropod vectors that transmit parasites play an important role in the distribution, prevalence and coevolution of pathogens of human and wildlife significance. We determined the genetic diversity and population structure of the sand fly Lutzomyia vexator over spatial scales from 0.56 to 3.79 km at a study region in northern California. The study was provoked by observations of differentiation at fine spatial scales of a lizard malaria parasite vectored by Lu. vexator. METHODS: A microsatellite enrichment/next-generation sequencing protocol was used to identify variable microsatellite loci within the genome of Lu. vexator. Alleles present at these loci were examined in four populations of Lu. vexator in Hopland, CA. Population differentiation was assessed using Fst and D (of Cavalli-Sforza and Edwards), and the program Structure was used to determine the degree of subdivision present. The effective population size for the sand fly populations was also calculated. RESULTS: Eight microsatellite markers were characterized and revealed high genetic diversity (uHe = 0.79-0.92, Na = 12-24) and slight but significant differentiation across the fine spatial scale examined (average pairwise D = 0.327; F ST = 0.0185 (95 % bootstrapped CI: 0.0102-0.0264). Even though the insects are difficult to capture using standard methods, the estimated population size was thousands per local site. CONCLUSIONS: The results argue that Lu. vexator at the study sites are abundant and not highly mobile, which may influence the overall transmission dynamics of the lizard malaria parasite, Plasmodium mexicanum, and other parasites transmitted by this species.
Assuntos
Variação Genética , Genoma de Inseto , Repetições de Microssatélites/genética , Psychodidae/genética , Psychodidae/fisiologia , Alelos , Animais , California , Insetos Vetores/genética , Lagartos/parasitologia , Psychodidae/parasitologia , Navegação EspacialRESUMO
Plasmodium mexicanum is a malaria parasite that naturally infects the western fence lizard, Sceloporus occidentalis , in northern California. We set out to determine whether lizards naturally infected with this malaria parasite have different leukocyte profiles, indicating an immune response to infection. We used 29 naturally infected western fence lizards paired with uninfected lizards based on sex, snout-to-vent length, tail status, and the presence-absence of ectoparasites such as ticks and mites, as well as the presence-absence of another hemoparasite, Schellackia occidentalis. Complete white blood cell (WBC) counts were conducted on blood smears stained with Giemsa, and the proportion of granulocytes per microliter of blood was estimated using the Avian Leukopet method. The abundance of each WBC class (lymphocytes, monocytes, heterophils, eosinophils, and basophils) in infected and uninfected lizards was compared to determine whether leukocyte densities varied with infection status. We found that the numbers of WBCs and lymphocytes per microliter of blood significantly differed (P < 0.05) between the 2 groups for females but not for males, whereas parasitemia was significantly correlated with lymphocyte counts for males, but not for females. This study supports the theory that infection with P. mexicanum stimulates the lizard's immune response to increase the levels of circulating WBCs, but what effect this has on the biology of the parasite remains unclear.
Assuntos
Contagem de Leucócitos/veterinária , Lagartos/parasitologia , Malária/veterinária , Plasmodium/fisiologia , Animais , Estudos de Casos e Controles , Feminino , Interações Hospedeiro-Parasita/imunologia , Lagartos/sangue , Lagartos/imunologia , Malária/sangue , Malária/imunologia , Masculino , Parasitemia/parasitologia , Parasitemia/veterinária , Plasmodium/imunologia , Fatores SexuaisRESUMO
The impact of malaria intervention measures (insecticide-treated net use and artemisinin combination therapy) on malaria genetics was investigated at two sites in western Kenya: an endemic lowland and an epidemic highland. The genetic structure of the parasite population was assessed by using microsatellites, and the prevalence of drug-resistant mutations was examined by using the polymerase chain reaction-restriction fragment length polymorphism method. Two years after intervention, genetic diversity remained high in both populations. A significant decrease in the prevalence of quintuple mutations conferring resistance to sulfadoxine-pyrimethamine was detected in both populations, but the mutation prevalence at codon 1246 of the Plasmodium falciparum multidrug resistance 1 gene had increased in the highland population. The decrease in sulfadoxine-pyrimethamine-resistant mutants is encouraging, but the increase in P. falciparum multidrug resistance 1 gene mutations is worrisome because these mutations are linked to resistance to other antimalarial drugs. In addition, the high level of genetic diversity observed after intervention suggests transmission is still high in each population.
Assuntos
Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Humanos , Quênia , Desequilíbrio de Ligação , Malária Falciparum/tratamento farmacológico , MutaçãoRESUMO
Malaria transmission in sub-Saharan Africa varies seasonally in intensity. Outbreaks of malaria occur after the beginning of the rainy season, whereas, during the dry season, reports of the disease are less frequent. Anopheles gambiae mosquitoes, the main malaria vector, are observed all year long but their densities are low during the dry season that generally lasts several months. Aestivation, seasonal migration, and local adaptation have been suggested as mechanisms that enable mosquito populations to persist through the dry season. Studies of chromosomal inversions have shown that inversions 2La, 2Rb, 2Rc, 2Rd, and 2Ru are associated with various physiological changes that confer aridity resistance. However, little is known about how phenotypic plasticity responds to seasonally dry conditions. This study examined the effects of desiccation stress on transcriptional regulation in An. gambiae. We exposed female An. gambiae G3 mosquitoes to acute desiccation and conducted a genome-wide analysis of their transcriptomes using the Affymetrix Plasmodium/Anopheles Genome Array. The transcription of 248 genes (1.7% of all transcripts) was significantly affected in all experimental conditions, including 96 with increased expression and 152 with decreased expression. In general, the data indicate a reduction in the metabolic rate of mosquitoes exposed to desiccation. Transcripts accumulated at higher levels during desiccation are associated with oxygen radical detoxification, DNA repair and stress responses. The proportion of transcripts within 2La and 2Rs (2Rb, 2Rc, 2Rd, and 2Ru) (67/248, or 27%) is similar to the percentage of transcripts located within these inversions (31%). These data may be useful in efforts to elucidate the role of chromosomal inversions in aridity tolerance. The scope of application of the anopheline genome demonstrates that examining transcriptional activity in relation to genotypic adaptations greatly expands the number of candidate regions involved in the desiccation response in this important malaria vector.
Assuntos
Anopheles/genética , Anopheles/fisiologia , Dessecação , Genes de Insetos/genética , Estresse Fisiológico/genética , Transcrição Gênica , Transcriptoma , Animais , Inversão Cromossômica/genética , Feminino , Perfilação da Expressão Gênica , Umidade , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sobrevida , Fatores de TempoRESUMO
BACKGROUND: The impact of insecticide treated nets (ITNs) on reducing malaria incidence is shown mainly through data collection from health facilities. Routine evaluation of long-term epidemiological and entomological dynamics is currently unavailable. In Kenya, new policies supporting the provision of free ITNs were implemented nationwide in June 2006. To evaluate the impacts of ITNs on malaria transmission, we conducted monthly surveys in three sentinel sites with different transmission intensities in western Kenya from 2002 to 2010. METHODS AND FINDINGS: Longitudinal samplings of malaria parasite prevalence in asymptomatic school children and vector abundance in randomly selected houses were undertaken monthly from February 2002. ITN ownership and usage surveys were conducted annually from 2004 to 2010. Asymptomatic malaria parasite prevalence and vector abundances gradually decreased in all three sites from 2002 to 2006, and parasite prevalence reached its lowest level from late 2006 to early 2007. The abundance of the major malaria vectors, Anopheles funestus and An. gambiae, increased about 5-10 folds in all study sites after 2007. However, the resurgence of vectors was highly variable between sites and species. By 2010, asymptomatic parasite prevalence in Kombewa had resurged to levels recorded in 2004/2005, but the resurgence was smaller in magnitude in the other sites. Household ITN ownership was at 50-70% in 2009, but the functional and effective bed net coverage in the population was estimated at 40.3%, 49.4% and 28.2% in 2010 in Iguhu, Kombewa, and Marani, respectively. CONCLUSION: The resurgence in parasite prevalence and malaria vectors has been observed in two out of three sentinel sites in western Kenya despite a high ownership of ITNs. The likely factors contributing to malaria resurgence include reduced efficacy of ITNs, insecticide resistance in mosquitoes and lack of proper use of ITNs. These factors should be targeted to avoid further resurgence of malaria transmission.
Assuntos
Malária/epidemiologia , Malária/transmissão , Adolescente , Animais , Criança , Culicidae/crescimento & desenvolvimento , Feminino , Humanos , Quênia/epidemiologia , Malária/parasitologia , Masculino , Mosquiteiros/estatística & dados numéricos , Plasmodium falciparum/patogenicidadeRESUMO
Genetic diversity and population structure of Plasmodium vivax parasites are valuable to the prediction of the origin and spread of novel variants within and between populations, and to the program evaluation of malaria control measures. Using two polymorphic genetic markers, the merozoite surface protein genes PvMSP-3α and PvMSP-3ß, we investigated the genetic diversity of four Southeast Asian P. vivax populations, representing both subtropical and temperate strains with dramatically divergent relapse patterns. PCR amplification of PvMSP-3α and PvMSP-3ß genes detected three and four major size polymorphisms among the 235 infections examined, respectively, while restriction analysis detected 15 and 19 alleles, respectively. Samples from different geographical areas differed dramatically in their PvMSP-3α and PvMSP-3ß allele composition and frequency. Samples tended to cluster on the basis of their PCR-RFLP polymorphism. These results indicated that different parasite genotypes were circulating in each endemic area, and that geographic isolation may exist. Multiple infections were detected in all four parasite populations, ranging from 20.5% to 31.8%, strongly indicating that P. vivax populations were highly diverse and multiple clonal infections are common in these malaria-hypoendemic regions of Southeast Asia.
Assuntos
Antígenos de Protozoários/genética , Variação Genética , Malária Vivax/parasitologia , Plasmodium vivax/genética , Polimorfismo de Fragmento de Restrição , Proteínas de Protozoários/genética , China , Doenças Endêmicas , Frequência do Gene , Genótipo , Humanos , Malária Vivax/epidemiologia , Mianmar , Filogenia , FilogeografiaRESUMO
Quantifying the relative proportion of coexisting genotypes (clones) of a malaria parasite within its vertebrate host's blood would provide insights into critical features of the biology of the parasite, including competition among clones, gametocyte sex ratio, and virulence. However, no technique has been available to extract such data for natural parasite-host systems when the number of clones cycling in the overall parasite population is likely to be large. Recent studies find that data from genetic analyzer instruments for microsatellite markers allow measuring clonal proportions. We conducted a validation study for Plasmodium mexicanum and Plasmodium falciparum by mixing DNA from single-clone infections to simulate mixed infections of each species with known proportions of clones. Results for any mixture of DNA gave highly reproducible results. The relationship between known and measured relative proportions of clones was linear, with high regression r² values. Known and measured clone proportions for simulated infections followed over time (mixtures) were compared with 3 methods: using uncorrected data, with uncorrected data and confidence intervals constructed from observed experimental error, and using a baseline mixture of equal proportions to calibrate all other results. All 3 methods demonstrated value in studies of mixed-genotype infections sampled a single time or followed over time. Thus, the method should open new windows into the biology of malaria parasites.
Assuntos
Lagartos/parasitologia , Malária/veterinária , Repetições de Microssatélites , Plasmodium/genética , Animais , Primers do DNA/química , DNA de Protozoário/sangue , DNA de Protozoário/química , Genótipo , Malária/parasitologia , Plasmodium/classificação , Plasmodium/isolamento & purificação , Plasmodium falciparum/classificação , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase/normas , Reprodutibilidade dos Testes , Análise de Sequência de DNA/normasRESUMO
BACKGROUND: The Kenyan highlands were malaria-free before the 1910s, but a series of malaria epidemics have occurred in the highlands of western Kenya since the 1980s. Longitudinal studies of the genetic structure, complexity, infection dynamics, and duration of naturally acquired Plasmodium falciparum infections are needed to facilitate a comprehensive understanding of malaria epidemiology in the complex Kenyan highland eco-epidemiological systems where malaria recently expanded, as well as the evaluation of control measures. METHODS: We followed a cohort of 246 children residing in 3 villages at altitudes 1430 - 1580 m in western Kenya. Monthly parasitological surveys were undertaken for one year, yielding 866 P. falciparum isolates that were analyzed using 10 microsatellite markers. RESULTS: Infection complexity and genetic diversity were high (HE = 0.787-0.816), with ≥83% of infections harboring more than one parasite clone. Diversity remained high even during the low malaria transmission season. There was no significant difference between levels of genetic diversity and population structure between high and low transmission seasons. Infection turn-over rate was high, with the average infection duration of single parasite genotypes being 1.11 months, and the longest genotype persistence was 3 months. CONCLUSIONS: These data demonstrate that despite the relatively recent spread of malaria to the highlands, parasite populations seem to have stabilized with no evidence of bottlenecks between seasons, while the ability of residents to clear or control infections indicates presence of effective anti-plasmodial immune mechanisms.
Assuntos
Variação Genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Adolescente , Criança , Pré-Escolar , DNA de Protozoário/genética , Genótipo , Humanos , Incidência , Quênia/epidemiologia , Desequilíbrio de Ligação , Estudos Longitudinais , Malária Falciparum/epidemiologia , Repetições de Microssatélites , Plasmodium falciparum/isolamento & purificação , Densidade Demográfica , Estações do AnoRESUMO
Gene flow, and resulting degree of genetic differentiation among populations, will shape geographic genetic patterns and possibly local adaptation of parasites and their hosts. Some studies of Plasmodium falciparum in humans show substantial differentiation of the parasite in locations separated by only a few kilometers, a paradoxical finding for a parasite in a large, mobile host. We examined genetic differentiation of the malaria parasite Plasmodium mexicanum, and its lizard host, Sceloporus occidentalis, at 8 sites in northern California, with the use of variable microsatellite markers for both species. These lizards are small and highly territorial, so we expected local genetic differentiation of both parasite and lizard. Populations of P. mexicanum were found to be differentiated by analysis of 5 markers (F(st) values >0.05-0.10) over distances as short as 230-400 m, and greatly differentiated (F(st) values >0.25) for sites separated by approximately 10 km. In contrast, the lizard host had no, or very low, levels of differentiation for 3 markers, even for sites >40 km distant. Thus, gene flow for the lizard was great, but despite the mobility of the vertebrate host, the parasite was locally genetically distinct. This discrepancy could result if infected lizards move little, but their noninfected relatives were more mobile. Previous studies on the virulence of P. mexicanum for fence lizards support this hypothesis. However, changing prevalence of the parasite, without changes in density of the lizard, could also result in this pattern.
Assuntos
Fluxo Gênico , Variação Genética , Lagartos/parasitologia , Malária/veterinária , Plasmodium/genética , Animais , California , Mapeamento Cromossômico/veterinária , DNA de Protozoário/química , Sistemas de Informação Geográfica , Lagartos/classificação , Lagartos/genética , Malária/parasitologia , Repetições de Microssatélites , Plasmodium/classificação , Reação em Cadeia da Polimerase/veterináriaRESUMO
BACKGROUND: Transmission of malaria in an area of hypoendemicity in the highlands of western Kenya is not expected to lead to rapid acquisition of immunity to malaria. However, the subpopulation of individuals with asymptomatic Plasmodium falciparum infection may play a significant role as an infection reservoir and should be considered in malaria-control programs. Determination of the spatiotemporal dynamics of asymptomatic subpopulations provides an opportunity to estimate the epidemiological importance of this group to malaria transmission. METHODS: Monthly parasitological surveys were undertaken for a cohort of 246 schoolchildren over 12 months. The prevalence of P. falciparum infection among 2,611 blood samples was analyzed by both microscopy and polymerase chain reaction, and infection durations were determined. RESULTS: Infection prevalence and duration (range, 1-12 months) decreased with age and altitude. The prevalence was high among pooled blood samples recovered from children aged 5-9 years (34.4%) and from those aged 10-14 years (34.1%) but was significantly lower among blood samples obtained from older children (9.1%). The prevalence decreased from 52.4% among pooled blood samples from children living at an altitude of approximately 1,430 m to 23.3% among pooled samples from children living at an altitude of 1,580 m. CONCLUSIONS: The prevalence of asymptomatic P. falciparum infection was high, with polymerase chain reaction analysis detecting a significantly greater number of infections, compared with microscopy. Our results are consistent with gradual acquisition of immunity with increasing age upon repeated infection, and they also show that the risk of malaria transmission is highly heterogeneous in the highland area. The results provide strong support for targeted malaria-control interventions.
Assuntos
Malária Falciparum/epidemiologia , Adolescente , Animais , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Geografia , Humanos , Quênia/epidemiologia , Malária Falciparum/mortalidade , Masculino , Plasmodium falciparum/isolamento & purificação , PrevalênciaRESUMO
Ecological and evolutionary theory predicts that genetic diversity of microparasites within infected hosts will influence the parasite replication rate, parasitemia, transmission strategy, and virulence. We manipulated clonal diversity (number of genotypes) of the malaria parasite, Plasmodium mexicanum, in its natural lizard host and measured important features of the infection dynamics, the first such study for any natural Plasmodium-host association. Hosts harboring either a single P. mexicanum clone or various combinations of clones (scored via three microsatellite markers) were established. Production of asexually replicating stages (meronts) and maximal meront parasitemia did not differ by clonal diversity, nor did timing of first production of transmission stages (gametocytes). However, mean rate of gametocyte increase and maximal gametocyte parasitemia were greater for hosts with mixed-clone infections. Characteristics of infections were more variable in hosts with mixed-clone infections than with single-clone infections except for first production of gametocytes. One or more of the parasite reproductive traits were extreme in 20 of 52 hosts with mixed-clone infections. This was not associated with specific clones, but diversity itself. The overall pattern from studies of clonal diversity for human, rodent, and now reptile malaria parasites confirms that the genetic diversity of infections in the vertebrate host is of central importance for the ecology of Plasmodium.
Assuntos
Variação Genética , Lagartos/parasitologia , Plasmodium/genética , Plasmodium/fisiologia , Animais , Reprodução/genética , Reprodução/fisiologiaRESUMO
Microsatellites, short tandem repeats of nucleotides in the genome, are useful markers to detect clonal diversity within Plasmodium infections. However, accuracy in determining number of clones and their relative proportions based on standard genetic analyzer instruments is poorly known. DNA extracted from lizards infected with a malaria parasite, Plasmodium mexicanum, provided template to genotype the parasite based on three microsatellite markers. Replicate genotyping of the same natural infections demonstrated strong repeatability of data from the instrument. Mixing DNA extracted from several infected lizards simulated mixed-clone infections with known clonal diversity and relative proportions of clones (N = 56 simulations). The instrument readily detected at least four alleles (clones), even when DNA concentrations among clones differed up to tenfold, but alleles of similar size can be missed because they fall within the "stutter" artifact, and rarely does an allele fail to be detected. For simulations of infections that changed their relative proportions over time, changes in relative peak heights on the instrument output closely followed the known changes in relative proportions. Such data are useful for a broad range of studies on the ecology of malaria parasites.