Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1268887, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965022

RESUMO

Pinus pinaster forestry occupies >20% of the forest ecosystem area in the continental territory of Portugal with a high impact on the national economy. This species' major derived non-wood product is oleoresin, the raw material for rosin production. Rosin comprises mainly a blend of resin acids and has broad industrial and pharmaceutical applications. Oleoresin production in Portugal has been progressively reduced due to low-cost producers in other countries; currently, it reaches only 2% of the existing P. pinaster trees. To support this value chain, the chemical fingerprint of rosin derived from the national forest requires focused analysis. In the present study, we collected oleoresin within seven geographically distinct pure P. pinaster forests in two consecutive collection years. A high-resolution nuclear magnetic resonance (NMR) method was used to quantify the diversity of resin acids in the corresponding rosin samples. Overall, the acquired data highlighted that the profile of resin acids in P. pinaster rosin produced in Portugal is highly regular, regardless of the forest location, having as the major constituents abietic acid and dehydroabietic acid. The diversity of resin acids is possibly influenced, to a minor extent, by some edaphoclimatic factors.

2.
Microb Biotechnol ; 13(6): 1983-1996, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32813320

RESUMO

Hydroxymethylfurfural (HMF) is a promising lignocellulosic-derived source for the generation of diverse chemical building blocks constituting an alternative to fossil fuels. However, it remains unanswered if ubiquitous fungi can ensure their efficient decay, similar to that observed in highly specialised fungi. To disclose the genetic basis of HMF degradation in aspergilli, we performed a comprehensive analysis of Aspergillus nidulans ability to tolerate and to degrade HMF and its derivatives (including an HMF-dimer). We identified the degradation pathway using a suite of metabolomics methods and showed that HMF was modified throughout sequential reactions, ultimately yielding derivatives subsequently channelled to the TCA cycle. Based on the previously revealed hmfFGH gene cluster of Cupriavidus basilensis, we combined gene expression of homologous genes in Aspergillus nidulans and functional analyses in single-deletion mutants. Results were complemented with orthology analyses across the genomes of twenty-five fungal species. Our results support high functional redundancy for the initial steps of the HMF degradation pathway in the majority of the analysed fungal genomes and the assignment of a single-copy furan-2,5-dicarboxylic acid decarboxylase gene in A. nidulans. Collectively our data made apparent the superior capacity of aspergilli to mineralise HMF, furthering the environmental sustainability of a furan-based chemistry.


Assuntos
Aspergillus nidulans , Aspergillus nidulans/genética , Cupriavidus , Furaldeído/análogos & derivados , Furanos
3.
Microbiome ; 6(1): 208, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30466483

RESUMO

BACKGROUND: The impacts of man-made chemicals, in particular of persistent organic pollutants, are multifactorial as they may affect the integrity of ecosystems, alter biodiversity and have undesirable effects on many organisms. We have previously demonstrated that the belowground mycobiota of forest soils acts as a buffer against the biocide pollutant pentachlorophenol. However, the trade-offs made by mycobiota to mitigate this pollutant remain cryptic. RESULTS: Herein, we demonstrate using a culture-dependent approach that exposure to pentachlorophenol led to alterations in the composition and functioning of the metacommunity, many of which were not fully alleviated when most of the biocide was degraded. Proteomic and physiological analyses showed that the carbon and nitrogen metabolisms were particularly affected. This dysregulation is possibly linked to the higher pathogenic potential of the metacommunity following exposure to the biocide, supported by the secretion of proteins related to pathogenicity and reduced susceptibility to a fungicide. Our findings provide additional evidence for the silent risks of environmental pollution, particularly as it may favour the development of pathogenic trade-offs in fungi, which may impose serious threats to animals and plant hosts.


Assuntos
Poluentes Ambientais/toxicidade , Poluição Ambiental/análise , Fungos/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Pentaclorofenol/toxicidade , Esporos Fúngicos/crescimento & desenvolvimento , Carbono/metabolismo , Florestas , Fungos/genética , Fungos/metabolismo , Nitrogênio/metabolismo , Proteoma/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-28824907

RESUMO

Plant terpenoids compose a natural source of chemodiversity of exceptional value. Many of these compounds own biological/pharmacological activity, others are regarded as unique chemical skeletons for the synthesis of derivatives with improved properties. Functional chemical modification of terpenoids through biotransformation frequently relies on the use of Ascomycota strains, but information on major cellular responses is still largely lacking. Penicillium janczewskii mediates a stereo-selective hydroxylation of labdanolic acid (LA)-terpenoid found abundantly in Cistus ladanifer-producing 3ß-hydroxy-labdanolic acid with yields >90%. Herein, combined analyses of mycelial and extracellular differential proteomes demonstrated that the plant terpenoid increased stress responses, especially against oxidative stress (e.g., accumulation of superoxide dismutase) and apparently altered mitochondria functioning. One putative cytochrome P450 monooxygenase differentially accumulated in the secretome and the terpenoid bioconversion was inhibited in vivo in the presence of a P450 inhibitor. The stereo-selective hydroxylation of the plant terpenoid is likely mediated by P450 enzymes, yet its unequivocal identity remains unclear. To the best of our knowledge, this is the first time that proteomics was used to investigate how a plant terpenoid impacts the metabolism of a filamentous fungus during its efficiently biotransformation. Our findings may encourage the development of new strategies for the valorization of plant natural resources through biotechnology.

5.
Curr Opin Microbiol ; 37: 142-149, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28704686

RESUMO

Atmospheric release of persistent organic pollutants (POPs) constitutes a silent threat through chronic contamination of soils at global scale; yet fundamental understanding of their occurrence, sources and fate is still largely lacking. Similar to a three act play, this review comprises Setup, Confrontation and Resolution. The first emphasises the eighty years of the history of pentachlorophenol (PCP) usage, only recently classified as POP. The second focus on active sources of PCP pollution, including inside cork oak forests in N.W. Tunisia; a threat partially neutralised by the soil microbial diversity, especially fungi. As Resolution, the need for improved knowledge on the global distribution and impacts of PCP in soil microbial diversity as means to preserve the multi-functionality of terrestrial ecosystem is emphasised.


Assuntos
Antifúngicos/metabolismo , Poluentes Ambientais/metabolismo , Fungos/efeitos dos fármacos , Micobioma/efeitos dos fármacos , Pentaclorofenol/metabolismo , Quercus/crescimento & desenvolvimento , Microbiologia do Solo , Florestas , Tunísia
6.
Environ Microbiol ; 17(8): 2922-34, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25753337

RESUMO

Pentachlorophenol (PCP) is globally dispersed and contamination of soil with this biocide adversely affects its functional biodiversity, particularly of fungi - key colonizers. Their functional role as a community is poorly understood, although a few pathways have been already elucidated in pure cultures. This constitutes here our main challenge - elucidate how fungi influence the pollutant mitigation processes in forest soils. Circumstantial evidence exists that cork oak forests in N. W. Tunisia - economically critical managed forests are likely to be contaminated with PCP, but the scientific evidence has previously been lacking. Our data illustrate significant forest contamination through the detection of undefined active sources of PCP. By solving the taxonomic diversity and the PCP-derived metabolomes of both the cultivable fungi and the fungal community, we demonstrate here that most strains (predominantly penicillia) participate in the pollutant biotic degradation. They form an array of degradation intermediates and by-products, including several hydroquinone, resorcinol and catechol derivatives, either chlorinated or not. The degradation pathway of the fungal community includes uncharacterized derivatives, e.g. tetrachloroguaiacol isomers. Our study highlights fungi key role in the mineralization and short lifetime of PCP in forest soils and provide novel tools to monitor its degradation in other fungi dominated food webs.


Assuntos
Florestas , Fungos/metabolismo , Pentaclorofenol/metabolismo , Quercus/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Biodiversidade , Poluição Ambiental , Fungos/isolamento & purificação , Solo/química , Tunísia
7.
J Proteomics ; 98: 175-88, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24316358

RESUMO

Cork, the outer bark of Quercus suber, shows a unique compositional structure, a set of remarkable properties, including high recalcitrance. Cork colonisation by Ascomycota remains largely overlooked. Herein, Aspergillus nidulans secretome on cork was analysed (2DE). Proteomic data were further complemented by microscopic (SEM) and spectroscopic (ATR-FTIR) evaluation of the colonised substrate and by targeted analysis of lignin degradation compounds (UPLC-HRMS). Data showed that the fungus formed an intricate network of hyphae around the cork cell walls, which enabled polysaccharides and lignin superficial degradation, but probably not of suberin. The degradation of polysaccharides was suggested by the identification of few polysaccharide degrading enzymes (ß-glucosidases and endo-1,5-α-l-arabinosidase). Lignin degradation, which likely evolved throughout a Fenton-like mechanism relying on the activity of alcohol oxidases, was supported by the identification of small aromatic compounds (e.g. cinnamic acid and veratrylaldehyde) and of several putative high molecular weight lignin degradation products. In addition, cork recalcitrance was corroborated by the identification of several protein species which are associated with autolysis. Finally, stringent comparative proteomics revealed that A. nidulans colonisation of cork and wood share a common set of enzymatic mechanisms. However the higher polysaccharide accessibility in cork might explain the increase of ß-glucosidase in cork secretome. BIOLOGICAL SIGNIFICANCE: Cork degradation by fungi remains largely overlook. Herein we aimed at understanding how A. nidulans colonise cork cell walls and how this relates to wood colonisation. To address this, the protein species consistently present in the secretome were analysed, as well as major alterations occurring in the substrate, including lignin degradation compounds being released. The obtained data demonstrate that this fungus has superficially attacked the cork cell walls apparently by using both enzymatic and Fenton-like reactions. Only a few polysaccharide degrading enzymes could be detected in the secretome which was dominated by protein species associated with autolysis. Lignin degradation was corroborated by the identification of some degradation products, but the suberin barrier in the cell wall remained virtually intact. Comparative proteomics revealed that cork and wood colonisation share a common set of enzymatic mechanisms.


Assuntos
Aspergillus nidulans/metabolismo , Parede Celular/microbiologia , Proteínas Fúngicas/metabolismo , Casca de Planta/microbiologia , Proteoma/metabolismo , Quercus/microbiologia , beta-Glucosidase/metabolismo , Casca de Planta/citologia , Quercus/citologia
8.
Environ Monit Assess ; 186(2): 1281-93, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24092255

RESUMO

A major concern for the cork and wine industry is 'cork taint' which is associated with chloroanisoles, the microbial degradation metabolites of chlorophenols. The use of chlorophenolic compounds as pesticides within cork forests was prohibited in 1993 in the European Union (EU) following the introduction of industry guidance. However, cork produced outside the EU is still thought to be affected and simple, robust methods for chlorophenol analysis are required for wider environmental assessment by industry and local environmental regulators. Soil samples were collected from three common-use forests in Tunisia and from one privately owned forest in Sardinia, providing examples of varied management practice and degree of human intervention. These provided challenge samples for the optimisation of a HPLC-UV detection method. It produced recoveries consistently >75% against a soil CRM (ERM-CC008) for pentachlorophenol. The optimised method, with ultraviolet (diode array) detection is able to separate and quantify 16 different chlorophenols at field concentrations greater than the limits of detection ranging from 6.5 to 191.3 µg/kg (dry weight). Application to a range of field samples demonstrated the absence of widespread contamination in forest soils at sites sampled in Sardinia and Tunisia.


Assuntos
Clorofenóis/análise , Monitoramento Ambiental , Quercus/química , Poluentes do Solo/análise , Solo/química , Itália , Quercus/crescimento & desenvolvimento , Tunísia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA