Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012733

RESUMO

In all mammalian species tested to date, rod photoreceptor outer segment renewal is a circadian process synchronized by light with a burst of outer segment fragment (POS) shedding and POS phagocytosis by the adjacent retinal pigment epithelium (RPE) every morning at light onset. Recent reports show that RPE phagocytosis also increases shortly after dark onset in C57BL/6 (C57) mice. Genetic differences between C57 mice and 129T2/SvEmsJ (129) mice may affect regulation of outer segment renewal. Here, we used quantitative methods to directly compare outer segment renewal in C57 and 129 mouse retina. Quantification of rhodopsin-positive phagosomes in the RPE showed that in 129 mice, rod POS phagocytosis after light onset was significantly increased compared to C57 mice, but that 129 mice did not show a second peak after dark onset. Cone POS phagosome content of RPE cells did not differ by mouse strain with higher phagosome numbers after light than after dark. We further quantified externalization of the "eat me" signal phosphatidylserine by outer segment tips, which precedes POS phagocytosis. Live imaging of retina ex vivo showed that rod outer segments extended PS exposure in both strains but that frequency of outer segments with exposed PS after light onset was lower in C57 than in 129 retina. Taken together, 129 mice lacked a burst of rod outer segment renewal after dark onset. The increases in rod outer segment renewal after light and after dark onset in C57 mice were attenuated compared to the peak after light onset in 129 mice, suggesting an impairment in rhythmicity in C57 mice.


Assuntos
Ritmo Circadiano , Segmento Externo da Célula Bastonete , Animais , Ritmo Circadiano/fisiologia , Mamíferos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Fagocitose/fisiologia , Fagossomos , Fosfatidilserinas , Epitélio Pigmentado da Retina/fisiologia , Segmento Externo da Célula Bastonete/fisiologia
2.
Int J Mol Sci ; 23(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35409021

RESUMO

In the vertebrate retina, the light-sensitive photoreceptor rods and cones constantly undergo renewal by generating new portions of the outer segment and shedding their distal, spent tips. The neighboring RPE provides the critical function of engulfing the spent material by phagocytosis. RPE phagocytosis of shed rod outer segment fragments is a circadian process that occurs in a burst of activity shortly after daily light onset with low activity at other times, a rhythm that has been reported for many species and over 50 years. In this review, we compare studies on the rhythm and quantity of RPE phagocytosis using different in vivo model systems and assessment methods. We discuss how measurement methodology impacts the observation and analysis of RPE phagocytosis. Published studies on RPE phagocytosis investigating mice further suggest that differences in genetic background and housing conditions may affect results. Altogether, a comparison between RPE phagocytosis studies performed using differing methodology and strains of the same species is not as straightforward as previously thought.


Assuntos
Fagocitose , Epitélio Pigmentado da Retina , Animais , Ritmo Circadiano/fisiologia , Camundongos , Fagocitose/genética , Retina , Epitélio Pigmentado da Retina/fisiologia , Células Fotorreceptoras Retinianas Bastonetes
3.
Redox Biol ; 42: 101918, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33674251

RESUMO

Methionine sulfoxide reductase A (MsrA) is a widely expressed antioxidant enzyme that counteracts oxidative protein damage and contributes to protein regulation by reversing oxidation of protein methionine residues. In retinal pigment epithelial (RPE) cells in culture, MsrA overexpression increases phagocytic capacity by supporting mitochondrial ATP production. Here, we show elevated retinal protein carbonylation indicative of oxidation, decreased RPE mitochondrial membrane potential, and attenuated RPE phagocytosis in msra-/- mice. Moreover, electroretinogram recordings reveal decreased light responses specifically of cone photoreceptors despite normal expression and localization of cone opsins. Impairment in msra-/- cone-driven responses is similar from 6 weeks to 13 months of age. These functional changes match dramatic decreases in lectin-labeled cone sheaths and reduction in cone arrestin in msra-/- mice. Strikingly, cone defects in light response and in lectin-labeled cone sheath are completely prevented by dark rearing. Together, our data show that msra-/- mice provide a novel small animal model of preventable cone-specific photoreceptor dysfunction that may have future utility in analysis of cone dystrophy disease mechanisms and testing therapeutic approaches aiming to alleviate cone defects.


Assuntos
Antioxidantes , Metionina Sulfóxido Redutases , Animais , Antioxidantes/metabolismo , Metionina Sulfóxido Redutases/genética , Metionina Sulfóxido Redutases/metabolismo , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo , Fagocitose
4.
Invest Ophthalmol Vis Sci ; 62(2): 7, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33538769

RESUMO

Purpose: Galectin-3 (gal-3) is a soluble glycoprotein that has been associated with diverse forms of phagocytosis, including some mediated by the engulfment receptor MerTK. Retinal pigment epithelium (RPE) in vivo uses MerTK (or the related Tyro3) for phagocytosis of shed outer segment fragments during diurnal outer segment renewal. Here, we test if gal-3 plays a role in outer segment renewal in mice and if exogenous gal-3 can promote MerTK-dependent engulfment of isolated outer segment fragments by primary RPE cells in culture. Methods: We explored age- and strain-matched wild-type (wt), lgals3-/- and mertk-/- mice. Immunofluorescence and immunoblotting characterized gal-3 and RPE/retina protein expression, respectively. Outer segment renewal was investigated by live imaging of phosphatidylserine (PS) exposure on photoreceptor outer segment distal tips and by microscopy of rhodopsin-labeled RPE phagosomes in tissue sections. Retinal function was assessed by recording electroretinograms (ERGs). Phagocytosis assays feeding purified outer segment fragments (POS) were conducted with added recombinant proteins testing unpassaged primary mouse RPE. Results: Gal-3 localizes to neural retina and RPE in wt mice. The lgals3-/- photoreceptor outer segments display normal diurnal PS exposure at distal tips. The number of rhodopsin-positive phagosomes in wt and lgals3-/- RPE does not differ at peak or trough of diurnal phagocytosis activity. lgals3-/- mice show light responses like wt, and their eyes contain wt levels of retinal and RPE proteins. Unlike purified protein S, recombinant gal-3 fails to promote POS engulfment by mouse primary RPE in culture. Conclusions: Gal-3 has no essential role in MerTK-dependent outer segment renewal in mice.


Assuntos
Proteínas Sanguíneas/metabolismo , Ritmo Circadiano/fisiologia , Galectinas/metabolismo , Degeneração Retiniana/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Eletrorretinografia , Feminino , Masculino , Camundongos , Camundongos Mutantes , Fagocitose , Degeneração Retiniana/patologia , Segmento Externo das Células Fotorreceptoras da Retina/patologia , Epitélio Pigmentado da Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA